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Abstract

This paper investigates the validity of common ap-
proaches to power management based on dynamic volt-
age scaling (DVS). Using instrumented hardware and ap-
propriate operating-system support, we account separately
for energy consumed by the processor and the memory sys-
tem. We find that memory often contributes significantly to
overall power consumption, which leads to a much more
complex relationship between energy consumption and core
voltage and frequency than is frequently assumed. As a
consequence, we find that the voltage and frequency setting
that minimises energy consumption is dependent on system
characteristics, and, more importantly, on the application-
specific balance of memory and CPU activity. The optimal
setting of core voltage and frequency therefore requires ei-
ther a-priori analysis of the application or, where this is not
feasible, power monitoring at run time.

1 Introduction

Dynamic voltage scaling (DVS) is a standard technique
for managing the power consumption of a system [22]. It is
based on the fact that the dynamic (switching) power P of
CMOS circuits is strongly dependent on the core voltage V

and the clock frequency f according to

P ∝ fV 2. (1)

Under the assumption that the number of clock cycles
required for a computation is independent of the core fre-
quency, the execution time is inversely proportional to the
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frequency. The total energy E for the computation is then
proportional to the square of the voltage:

E ∝ V 2. (2)

Note that the total energy for a computation does in this
simple model not depend on the frequency, but a reduced
core voltage requires a reduction of the clock frequency and
therefore implies a longer overall execution time.

The assumptions behind Eqn. 2 are highly dubious, as
they ignore other system components, in particular the
front-side bus and memory [2]. Those other components
impact the execution time of a program, leading to a much
more complex dependence on the processor frequency. Fur-
thermore, those components themselves consume energy,
and that energy consumption scales differently than the pro-
cessor’s. While memory power may be dominated by CPU
power in high-end systems, this is not the case for embed-
ded systems using low-power processors. Finally, Eqn. 1 is
not even necessarily a good model of the power consump-
tion of a modern processor, as for modern CMOS circuits
the static energy consumption can no longer be ignored.

This paper presents a measurement-based examination
of the effect of DVS on the energy required to execute appli-
cations on a modern embedded system. We independently
measure processor and memory power consumption on a
representative platform, and find that the behaviour is quite
different from what is expected by the simple model. As a
consequence, we find that more sophisticated methods are
required in order to manage limited energy resources well.

2 Related Work

There exists a large body of work on both dynamic and
static voltage scaling [3, 5, 6, 13, 14, 18, 22]. Many of the
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ideas developed by Weiser et al. [22] and Govil et al. [5]
form the basis of these algorithms: that the CPU idle (slack)
time should be minimised by slowing the CPU core fre-
quency. This reduces the DVS problem to estimating the
idle time.

Other studies have examined frequency and voltage scal-
ing in time-sensitive systems [11,19,20,24]. One approach
is to use timing information which is available in real-time
systems. This can allow static schedules to be developed
such that processor utilisation is maximised (all deadlines
are only just met). Modifications can be made to the sched-
ule on-line in order to make use of slack-time made avail-
able by processes which complete before their deadlines.

Weissel and Bellosa [23] measured the effect of fre-
quency scaling on the performance and total power con-
sumption of an XScale-based computer running several
benchmarks. They examined the number of memory ref-
erences and instructions executed at runtime in order to
determine the memory dependence of an application, and
thus estimate its response to a reduction in CPU frequency
(a memory-bound application will be limited by memory
speed rather than CPU speed). They determine what CPU
core frequency will result in a 10% or less reduction in per-
formance for the process. No voltage scaling was used in
this work. Choi et al [10] refined this work to allow a dy-
namic rather than static tradeoff between power and per-
formance reduction by characterising process memory and
CPU usage at run-time.

There are several previous studies of the power con-
sumed by real computers. The most relevant is that of
Miyoshi et al [16] who examine a set of microbenchmarks
running on two different platforms. They find that in some
cases the lowest-performance setting may not give the low-
est total energy. They also provide a methodology for
choosing which settings shoud be ignored.

Fan et al. [2] used a modified simulator to estimate the
power consumed by an XScale-based device with power-
aware SDRAM. They observe that, owing to a system’s
static power consumption (particularly owing to DRAM),
the energy reduction via frequency scaling can be out-
weighed by the energy resulting from a longer execution
time. Their results indicate that an aggressive memory
power-down policy such as that which they had previously
developed [1] can reduce this effect.

Martin [14] studied the effect of frequency scaling on
battery lifetime, developing a system for identifying the
CPU frequency at which the most computation could be
performed using a single battery charge.

Flinn et al. [4] conducted a similar study of the ItSY
pocket computer, using external power management and
off-line evaluation. Micro-benchmarks were used to study

the effect of frequency scaling on the processor’s perfor-
mance and power consumption. Voltage scaling was not
examined.

3 Benchmarks

A number of benchmarks were used to represent typical
workloads for a variety of embedded system. The major-
ity of these were taken from the MiBench [7] suite, along
with four others, also representing typical embedded appli-
cations, described in previous work [21]. Each benchmark
in this collection represents a fixed amount of “work” for
the system, therefore the total energy for each benchmark is
directly comparable.

MiBench is a suite developed by the academic commu-
nity with the explicit aim of representing embedded work-
loads. The particular benchmarks used were selected based
on their resource requirements: many of the MiBench tests
require large input data which could not be accommodated
on the RAM disk of our disk-less system. The future addi-
tion of network and disk support to PLEB 2 should allow the
full suite to be executed. Furthermore, benchmarks which
ran for less than four seconds were excluded to avoid mea-
suring start-up and wind-down energy.

All output was discarded to avoid filesystem overheads
and resource constraints.

4 Experimental Platform

The experiments were performed on PLEB 2 [21], a
power-aware computer based on ARM XScale processor
running a standard Linux OS, augmented with current sen-
sors to measure the power consumption of the CPU core,
RAM, and I/O devices.

4.1 Hardware

PLEB 2 is a single-board computer based on the Intel
XScale PXA255 [9]. The PXA255 was chosen as being rep-
resentative of high-performance, low-power CPUs designed
for use in embedded systems. It consists of a 400MHz
ARMv5TE-compatible core combined with a set of on-
chip peripheral units including memory, interrupt, DMA
and LCD controllers.

The computer consists of the CPU, SDRAM and flash
memory. The SDRAM is implemented using two Micron
MT48LC16M16A2 ICs [15], and the flash is implemented
using two Intel TE28F320 ICs [8]. Three switching power
supplies generate core, memory and IO power. A minimal
set of peripherals (infra-red, USB, and serial port) are pro-
vided on-board. An 8-bit microcontroller performs a super-
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visory role. The PXA255, flash, SDRAM and the power
supply represent the core of a typical embedded system.

Linux 2.4.19, Linux 2.6.8, L4ka::Pistachio [12], and
Iguana [17] have been adapted to run on PLEB 2 hardware.

4.2 Power management features

PLEB 2 supports a number of power management fea-
tures. Frequency/voltage scaling and low-power modes are
software-managed throttling mechanisms of interest.

The PXA255 supports the frequency scaling of three
main clocks:

• the CPU core (core);

• the PXBus (pxbus): an internal bus that links the CPU
core, DMA/Bridge, memory controller and LCD con-
troller;

• the memory clock (memclk): drives the memory and
LCD controller.

While the hardware which controls the frequency set-
tings will allow a large number of combinations of core,
pxbus and memclk frequencies, only a subset of these will
allow the system to operate correctly (i.e. within the upper
and lower frequency limits for all components in the sys-
tem). All of the valid setpoints are shown in in Table 1.

The power-supply chip used in PLEB 2 (Epson
S1F81100) supports voltage scaling. The core (CPU) volt-
age can be varied in 0.1V increments. This voltage is set to
the appropriate value as given in the PXA255 developer’s
manual [9].

The PXA255, SDRAM and flash memory all support
low-power states. In these states, the devices have a re-
duced functionality, but use significantly less power. For the
PXA255, there are several modes: run/turbo, idle, 33MHz
idle and sleep. Run/turbo are active modes where the CPU
is running. Turbo mode is a mechanism for performing fast
frequency changes by synchronously switching a clock di-
vider. Idle mode stops the CPU core clock but does not halt
its generation, avoiding loss of state and supporting a fast
recovery to run mode. 33MHz idle and sleep mode are pro-
gressively deeper sleep states that require longer recovery
times.

The Micron SDRAM also supports low-power modes.
While not being accessed, it maintains an active standby
mode which, according to the datasheet [15], consumes a
maximum of 132mW per chip (although the typical idle cur-
rent has been measured to be much lower on PLEB 2). If
the chip is put into power-down mode (data is retained, but
the chip must be refreshed periodically) it consumes a max-
imum of 6.6mW.

The Intel Flash chips have very effective automatic
power management: according to the datasheet [8] they
use less than 1mW unless being read/written, and even less
when in one of the available power-down mode. Since the
power consumption of flash is very small compared to CPU
and memory we ignore it in our discussion.

4.3 Measurement system

The computing core of PLEB 2 is supplied by three
power supplies. These are dedicated to the CPU core (nom-
inally 1.5V), memory bus devices (3.3V), and IO devices
(3.3V). Each of these power supplies is instrumented using
a small series resistor and an amplifier. The analogue-to-
digital converter within the on-board microcontroller reads
the resulting signal. The voltage on the supplies is assumed
to be sufficiently constant as to not require measurement.
The power can then be calculated via P = IV .

Data collected is transferred from the microcontroller to
the PXA255 via an I2C bus. Statistical sampling is used
to associate the power readings with the running processes.
For each sample, a series of interrupts are generated to
record which process the sample should be attributed to,
and to start the transfer of data. The resulting information
is made available at user level at run-time.

The overhead associated with handling the measure-
ments on the PXA255 will introduce an error to the mea-
surement of time, cache misses, writebacks, etc. This is
because the CPU will spend some time handling the inter-
rupts, and because the events associated with the interrupt
handlers. This overhead varies between 2% and 10% of
execution time depending on the nature of the application.
Because the sampling rate is independent of the proces-
sor speed the overheads will vary. The measured power is
not affected by the measurement system because the power
samples are always taken when running the real system.

Further information regarding the measurement system,
its overheads and validation is given in a previous publica-
tion [21].

Cache miss and write-back numbers were determined us-
ing the PXA255’s performance monitoring unit and appro-
priate OS support.

All experiments were run on Linux 2.4.19, modified to
provide memory and CPU energy accounting through the
/proc file system, from where it can be accessed by a mod-
ified time() function.

5 Methodology

A number of operating points were chosen. Each oper-
ating point defines a specific hardware configuration under
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Vcore (V) fcpu (MHz) fpxbus (MHz) fmem (MHz)
1.0 99.5 50.0 99.5
1.0 199.1 99.5 99.5
1.1 298.6 99.5 99.5
1.3 398.1 99.5 99.5
1.3 398.1 199.5 99.5

Table 1. Hardware configurations under test
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Figure 1. Normalised CPU energy

test. Five operating points (as shown in Table 1) were ini-
tially available as defined by the frequency-setting code in
Linux — those where operating points where the memory
frequency was 99.5MHz. By varying (and even overclock-
ing) the memory frequency it would be possible obtain a
larger number of operating points than those used.

The platform was configured according to each of the
operating points and the benchmarks executed. The mean
current was measured for the CPU and memory power sup-
plies (since no devices are connected to the IO supply, that
supply was deemed irrelevant) and recorded on the RAM
disk. The results were later transferred to a PC for analy-
sis. Each experiment was repeated 10 times and the results
averaged, standard deviations were less than 1%.

6 Results

Fig. 1 shows the processor’s energy consumption of the
various benchmarks as a function of the core frequency, nor-
malised to the energy consumption at the lowest clock rate
(100MHz). There are two values at the highest frequency
(400MHz) correspond with the two different processor bus
frequencies used at that setting.

The bold line shows the prediction of Eqn. 2. Contrary to
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Figure 2. Memory power

naı̈ve theory, we find that the energy is in fact quite depen-
dent on the clock rate: Increasing the core frequency from
100MHz to 200MHz (at unchanged core voltage) results in
a drop of total energy for all benchmarks. Further frequency
increases lead to increases in energy, as they are accompa-
nied by voltage scaling. The benchmarks consistently stay
below the predictions of Eqn. 2 — in other words, Eqn. 2
over-estimates the benefit from DVS.

This effect can be explained with the processor’s static
power consumption, which is independent of the core fre-
quency. As the runs with a faster clock require less total
time, the total static energy consumption is less in those
cases.

The two benchmarks whose energy, under frequency and
voltage scaling (from 200 to 400MHz), grows steeper than
the theory are gzip and typeset, which are both memory-
limited while the others are CPU-limited. Memory is al-
ways clocked at the same rate, and therefore a memory-
limited application’s execution time benefits less from an
increase in the core frequency than CPU-limited applica-
tions. Hence, for those benchmarks the influence of the
static energy increases with increasing clock speed.

Memory behaves differently than the processor, and is
best examined in the power, rather than the energy dimen-
sion. As Fig. 2 shows, most benchmarks consume very lit-
tle memory power, and it is very weakly dependent on the
core frequency. These benchmarks run essentially out of
cache and cause very little memory traffic, so we see mainly
the static energy of RAM, which is attributed to DRAM
refreshes, leakage and powering input/output buffers. The
memory-intensive benchmarks show a strong frequency de-
pendence at lower clock rates, which then flattens out, a
consequence of the saturation of the memory system in
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Figure 3. Normalised total energy

those runs. Note also that the difference of the two data
points at the highest frequency (corresponding to different
bus frequencies, see Table 1) is highest for the memory-
limited benchmarks.

The flat curves mean that memory power scales very lit-
tle with core frequency. Translated into total energy (ac-
counting for total execution time) this means that memory
energy use is actually lowest at the highest clock rates.

Also shown in Fig. 2 (strongly rising curves) is the min-
imal and maximal CPU power consumed by the bench-
marks. It can be seen that, compared to memory power,
the range is relatively small, and except at the highest core
frequency, CPU power is dominated by memory power.

This helps explain Fig. 3, which shows the total
(CPU+memory) energy for the execution of the bench-
marks. Inclusion of the memory energy leads to results
which bear no similarity whatsoever with the model of
Eqn. 2, and, contrary to folklore, shows that the highest
clock rates actually minimise the energy requirements of the
computations!

This result is somewhat misleading, however. The higher
clock rates lead to faster completions of the runs. A more
fair comparison of energy requirements needs to compare
the energy used over the same total time period [2]. This
means that the slack time remaining after an early comple-
tion results in an idle system, which still consumes power.
We assume that the system, when idle, switches to the low-
power idle mode from which it can be woken up quickly
when an interrupt arrives (indicating a new computation
task).

The result is shown in Fig. 4. We can clearly see that
for all benchmarks the total energy is minimised at some
intermediate frequency, neither the highest nor the lowest.
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That frequency depends on the particular benchmark, it is
lower for the memory-intensive than for the CPU-intensive
benchmarks. The optimal frequency will obviously also de-
pend on characteristics of the system, such as type and size
of memory.

Weissel and Bellosa [23] model memory energy by us-
ing a performance counter to measure memory references,
and assume that the energy cost of each memory reference
is the same. Many systems (such as ours) do not provide
such performance counters. One can attempt to approx-
imate the number of memory references by the number
of cache misses (for which the PXA255 has performance
counters). Fig. 5 shows that this is inaccurate, as a single
cache miss can produce either one or two memory refer-
ences. For this figure we ran synthetic benchmarks which
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in a tight loop contained load instructions (read case in the
figure), or load instructions followed immediately by a store
to the same memory location (modify). Varying numbers of
nop instructions were inserted to vary the cache miss rate.
We see that the modify case has a higher memory-energy
cost per cache miss than the read, owing to the higher num-
ber of memory operations (write-back followed by a refill,
compared to just the refill). A realistic load would lie some-
where in between those extremes, but it would be difficult
to predict where. In addition, the presence of read and write
buffers significantly complicates any modelling of memory
traffic from cache miss rates.

7 Discussion

Our results show that traditional model of Eqn. 2 is not
suitable for estimating the effect of DVS on modern proces-
sors, as it ignores the effect of static power, and grossly dis-
torts reality. Furthermore, our measurements confirm that
memory contributes significantly to the power consumption
of embedded systems, and attempts to manage power with-
out taking memory into account will likely lead to incorrect
results.

Static power is also important for memory, and should
be ideally be minimised by keeping as much RAM as pos-
sible in a low-power state. Furthermore, modelling dy-
namic memory power by measuring cache misses can pro-
duce misleading results, unless read and write misses can
be measured separately (and even then it would be difficult
to achieve good accuracy), owing to the complex memory-
access patterns resulting from a processor which augments
caches by read and write buffers.

Overall we find that the dependence of the energy cost of
a computation on the processor core voltage and frequency
is a complex function of system configuration and proper-
ties of the application, too complex to predict an energy-
optimal operating point for DVS using simple models.

In some cases, the optimal operation may be determined
by off-line measurements, but in general this is only pos-
sible if application loads are known well in advance. The
only alternative is to determine the optimal voltage and fre-
quency setting at run-time, based on the observation of the
actual power consumption.

While we have shown how, with the help of some rela-
tively simple instrumentation, such observation can be per-
formed on off-the-shelf processors, this only provides the
input data for successful power management. The required
algorithms and policies remain the subject of future work.
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