
Koala
A Platform for OS-Level Power Management

David C. Snowdon12 Etienne Le Sueur12 Stefan M. Petters12 Gernot Heiser123

1The University of New South Wales2NICTA3Open Kernel Labs
Sydney, Australia

David.Snowdon@nicta.com.au

Abstract
Managing the power consumption of computing platforms
is a complicated problem thanks to a multitude of hard-
ware configuration options and characteristics. Much of
the academic research is based on unrealistic assumptions,
and has, therefore, seen little practical uptake. We provide
an overview of the difficulties facing power management
schemes when used in real systems.

We present Koala, a platform which uses a pre-
characterised model at run-time to predict the performance
and energy consumption of a piece of software. An arbitrary
policy can then be applied in order to dynamically trade per-
formance and energy consumption. We have implemented
this system in a recent Linux kernel, and evaluated it by run-
ning a variety of benchmarks on a number of different plat-
forms. Under some conditions, we observe energy savings
of 30% for a 4% performance loss.

Categories and Subject Descriptors D.4.8 [ Operating
Systems ]: Performance Modelling and prediction

General Terms Design, Experimentation, Measurement

Keywords Power, Energy, Efficiency, Modelling, Dynamic
voltage scaling, Power management, Operating systems

1. Introduction
Managing power consumption of computing platforms is be-
coming increasingly important. On the one hand, power is
becoming important for servers. Given the cost of power for
computation and cooling [Scaramella 2006] there is increas-
ing interest in reducing their energy consumption, and power
dissipation needs to be managed in order to prevent the
cores from overheating [Kumar 2006]. On the other hand,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Eurosys’09, April 1–3,2009,Nuremberg,Germany.
Copyright c© 2009 ACM 978-1-60558-482-9/09/04. . . $5.00

the ubiquity of battery-powered embedded devices, such as
mobile phones, is driving interest in energy management in
order to maximise battery life time [Martin 2001]. While su-
perficially similar, the different scenarios have different re-
quirements and constraints, which require different policies.

Properly managing power is difficult for a number of rea-
sons. One is the availability of a range of hardware mecha-
nisms, which can be used to influence power consumption.
A potentially effective mechanism isdynamic voltage and
frequency scaling (DVFS), which is based on the fact that
the dynamic power dissipated by a CMOS circuit is propor-
tional to the clock frequency and the square of the supply
voltage. Then there are idle (or “sleep”) states with reduced
power consumption available for CPU, memory and periph-
erals. The number of available mechanisms presents a chal-
lenge to effective power management, as each has a differ-
ent impact on power consumption and different trade-off be-
tween performance and energy use. Furthermore, the impact
on power usage as well as performance is generally non-
linear, platform-dependent and workload-dependent, and at
times, counter-intuitive.

Power management in present main-stream operating
systems tends to be simplistic. Standard policies are either
the “race-to-halt” approach, which runs the workload to
completion at the maximum performance setting and then
transitions into a low-power mode. Alternatively, the as-
sumption is made that the highest energy savings can be
achieved by running at the lowest performance setting. We
show that such simplistic approaches lead to sub-optimal re-
sults on real hardware.

In order for the OS to manage power effectively it must
be possible to predict the impact these mechanisms have on
both performance and power. This implies the need for an
accurate model of how the hardware mechanisms impact
on performance and energy consumption, which can then
be used to adjust the operating conditions to meet the per-
formance or energy targets defined by the system’s power-
management policy.

We had earlier developed an approach that allows us
to generate such a model, taking into account the proper-
ties of the hardware platform. The model can then be used

mailto:David.Snowdon@nicta.com.au


to predict the power and performance response of a work-
load [Snowdon 2007].

Based on that model we developed Koala,1 a platform that
lets the OS manage power according to an overall policy
guided by predicted power and performance. Koala collects
per-process performance statistics that characterise an appli-
cation’s behaviour. At each scheduling event, the behaviour
is matched against the system policy and the most appro-
priate operating conditions are determined. In general this
means that the power settings change at each time slice,
according to the characteristics of the process that is be-
ing scheduled. Koala also provides accurate per-process ac-
counting of energy use. This can be used to implement other
policies, such as overall or per-process energy budgets, or
limiting the average power use over a certain time window.

We have implemented Koala in Linux and evaluated its
operation on a range of platforms, from embedded proces-
sors typical for mobile phones up to high-end server plat-
forms.

This paper makes the following contributions:

• an investigation of factors affecting power use on a range
of platforms;

• a generic model that accurately predicts for each pro-
cess the performance and energy response when chang-
ing power settings;

• an improved energy-management policy, called the
generalised energy-delay policy, which incorporates
previously-used policies and provides a single parameter
for tuning the system to an overall energy-management
objective;

• an implementation of the model in Linux, called Koala,
that manages power near-optimally for multi-tasking
workloads on a range of platforms.

The remainder of this paper is structured as follows. In
Section 2 we discuss related work. Section 3 discusses,
based on measurements on actual computing systems, the
challenges facing OS-level power management. In Section 4
we discuss Koala, our implementation of a model-based
power-management platform in Linux. Section 5 presents
an evaluation of Koala on several hardware platforms and
Section 7 presents the conclusions we draw from the results.

2. Related Work
The energy savings possible via DVFS have been under ac-
tive investigation since the pioneering work of Weiser et
al. [Weiser 1994], who used the actual system utilisation in
a feedback loop to adjust the system frequency setting in or-
der to minimise idle time. An empirical evaluation of DVFS
algorithms concluded that the algorithms used at the time
did not save significant amounts of energy[Grunwald 2000].

1 The Koala is a marsupial native to Australia known for its extremely
efficient energy management.

[Miyoshi 2002] showed that the decrease in idle time result-
ing from execution at lower frequency can offset any savings
from DVFS. That work, however, was based on a simplis-
tic execution-time model. Our prior work has shown that the
most energy-efficient setting is dependent on workload char-
acteristics, and a good energy-management policy requires
on-line characterisation of workloads [Snowdon 2005].

[Bellosa 2000] correlated hardwareperformance moni-
toring counters (PMCs) with energy consumption, obtain-
ing an estimate of energy use at the current frequency set-
ting. [Weissel 2002] then used performance counters for in-
structions, memory-accesses and CPU cycles to index a pre-
computed table of frequency settings, with the aim of min-
imising energy use with a 10% performance degradation.
[Bircher 2005] used a similar technique on the Pentium 4,
which has many PMCs.

Other research (including our own) has led to more flex-
ible methods of selecting the frequency which gives a spec-
ified performance loss [Hsu 2004, Kotla 2004, Choi 2005,
Snowdon 2007]. By limiting the change in total execution
time, these methods implicitly limit the change in energy
used by the rest of the system, concentrating on savings in
CPU power. Our previous work [Snowdon 2007] extended
PMC-based energy estimation for predicting performance
and energy use at different frequencies, and incorporated
memory power. We also presented a systematic way for se-
lecting the most appropriate PMCs to use on a particular
platform.

[Kotla 2004] observed that the performance of the mem-
ory subsystem can vary thanks to the effectiveness of micro-
architectural techniques like pre-fetching and instruction-
level parallelism.

DVFS policies too numerous to discuss have been de-
veloped. The policy developments attempt to minimise the
performance loss (how much longer software takes to exe-
cute), minimise the energy for a given workload, or minimise
the energy-delay product (which places equal value on both
energy savings and performance loss) have been presented.
[Pénzes 2002] introduced the idea of geometrically weight-
ing theE × D product to provide a variable weighting on
energy and delay. We have extended this concept for a more
flexible use in the context of DVFS.

Predicting the workload to be executed plays a crucial
role in all on-line DVFS methods. [Hsu 2003] implemented
DVFS-aware compiler techniques which analyse code to
be run and insert DVFS calls. This has the advantage of
being able to synchronise DVFS scaling with real work-
load changes. As we have demonstrated, off-line information
alone is insufficient to choose the optimal frequency setting.
The information provided by these analyses would, however,
enhance the energy-saving ability of our system when avail-
able (with our present method used for non-DVFS-aware
workloads) by allowing improved workload prediction and
frequency-switch timing. Others have developed algorithms



 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 600  800  1000  1200  1400  1600  1800
 0.7

 0.8

 0.9

 1

 1.1
gz

ip
 N

or
m

al
is

ed
 E

ne
rg

y

sw
im

 N
or

m
al

is
ed

 E
ne

rg
y

Frequency (MHz)

gzip
swim

Figure 1. Normalised energy use of two benchmarks under
DVFS on a Latitude laptop

for run-time phase detection and prediction [Isci 2006]. We
see this work on workload prediction as being highly com-
plementary to our approach, since we presently employ a
very simple workload predictor. In the same manner, ma-
chine learning techniques [Kephart 2007] could be used to
improve the system’s predictive ability, as well as tune power
and performance estimators using on-line feedback.

[Mahesri 2004] found that a laptop CPU uses between
10 and 50% of the system’s power depending on work-
load. While the CPU is a significant contributor to overall
power consumption, it does not necessarily dominate. Con-
sequently, there has been work on developing complete sys-
tem power models based on run-time statistics [Heath 2005,
Economou 2006, Bircher 2007].

ECOsystem [Zeng 2005] was an attempt to build an
explicitly energy-aware operating system, introducing a
system-wide abstraction for the energy used. The purpose
was to budget the energy available to individual processes.
The models concentrated on I/O power and are therefore
complementary to the work presented here. Virtualisation
adds yet another dimension to energy and resource account-
ing [Stoess 2007].

Recently, the case has been made for improved hard-
ware support for power management. [Barroso 2007] ar-
gued for lower-power idle modes, based on the observation
that servers were nearly always less than 50% utilised. In
addition, they pointed out the need for more active-power
management mechanisms for devices such as memory, net-
work cards and disks. NVIDIA have recently introduced
such mechanisms [NVIDIA Corporation 2007]. Such active
management features would result in systems with many
interacting settings. We consider our energy-modelling ap-
proach as core to the effective management of such a system.
[Peddersen 2007] investigated a methodology for detecting
which events within a CPU should be used to estimate power
consumption, which provides the basis for a hardware man-

 0

 20

 40

 60

 80

 100

 120

 140

 0  100  200  300  400  500  600  700

T
im

e 
(s

)

Frequency (MHz)

Figure 2. Performance of a memory-bound application
(gzip) under frequency scaling on a PXA270-based plat-
form. Lines connect settings with the same memory but dif-
ferent core frequencies.

ufacturer to provide more suitable PMCs for energy estima-
tion.

3. Power Management Challenges
Our investigation of a wide range of platforms and work-
loads demonstrated the shortcomings of commonly-used
energy-management heuristics – they frequently fail to
achieve their goals. Here we present our main observations,
which were obtained with the the methodology described in
Section 5.

3.1 Workload dependence of DVFS response

Energy-management approaches are frequently based on
simplifying assumptions which neglect the fact that the re-
sponse to frequency scaling is highly dependent on workload
characteristics. This can lead to very poor results, as shown
in Figure 1.

Here we compare the responses of the CPU-boundgzip

and the memory-boundswim benchmark on a Dell Latitude
D600 laptop. As discussed in the literature, the execution
time of the CPU-bound program is proportional to the clock
period (inverse frequency), while for the memory-bound
program it is almost independent of CPU frequency. This
results in the energy consumption shown in the figure: Total
energy use for the CPU-bound benchmark is minimised by
running at the highest frequency (race-to-halt works well)
because this minimises the clock-independent memory en-
ergy and leakage losses in the CPU [Snowdon 2005]. In con-
trast, the memory-bound process minimises energy use at a
low (but not thelowest!) frequency. Clearly, an approach that
does not take workload characteristics into account will not
be able to deliver a reasonable result for both programs.



 1

 1.2

 1.4

 1.6

 1.8

 2

 600  800  1000  1200  1400  1600  1800

N
or

m
al

is
ed

 C
yc

le
s

CPU Frequency (MHz)

swim
equake

mgrid
gzip

Figure 3. Cycles vs. Frequency for various benchmarks on
a Latitude D600 laptop

3.2 Multiple adjustable frequencies

Some platforms we have previously evaluated, such as those
based on Intel PXA processors, allow multiple frequencies
to be modified, typically CPU, bus(es) and memory. Dif-
ferent combinations of frequencies (which we callsettings)
lead to different results, as shown in Figure 2. This shows
the execution time ofgzip (which is memory-bound on this
platform – the opposite of the D600!) on a PXA270-based
machine for different frequency settings, showing the im-
pact of memory frequency. CPU-bound applications are un-
affected by memory frequency.

3.3 Variable memory system performance

The performance of the memory subsystem at a particular
memory frequency may appear to depend on the core fre-
quency [Kotla 2004]. This is a result of micro-architectural
features, designed to improve performance, such as out-of-
order execution or pre-fetching. These can hide some of the
latency of cache misses (by overlapping them with instruc-
tion execution) but become less effective as the ratio of core
to memory frequency increases. An example is shown in
Figure 3. The behaviour of both the CPU-bound (gzip) and
memory-bound (swim) benchmarks are well represented by
straight lines (withswim extending above the upper bound of
the graph), while intermediate workloads (especiallymgrid)
show significant non-linearity. This effect contributes tothe
error in our models, since the performance counters required
to estimate these effects accurately are not available.

The memory configuration also has an effect on energy
consumption as shown in Figure 4. The energy use forswim

is quite different with and without dual-channel memory en-
abled in the system, which happens when adding a second
memory DIMM. The figure also shows the effect of chang-
ing the memory frequency on the energy consumption — the
irregular behaviour at 800MHz is due to a reduced memory
frequency for that setting.

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 800  1000  1200  1400  1600  1800  2000
 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

N
or

m
al

is
ed

 E
ne

rg
y 

C
on

su
m

pt
io

n

N
or

m
al

is
ed

 C
yc

le
s

Frequency (MHz)

Normalised Energy Single
Normalised Energy Dual

Normalised Cycles Single
Normalised Cycles Dual

Figure 4. Comparison of cycles and energy use on an
AMD64 Server with and without dual channel memory for
swim.

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 600  800  1000  1200  1400  1600  1800

 9000

 10000

 11000

 12000

 13000

G
zi

p 
E

ne
rg

y 
(J

)

S
w

im
 E

ne
rg

y 
(J

)

Frequency (MHz)

C2 (13.4W) gzip
C4 (11.5W) gzip

5W gzip
0W gzip

C2 (13.4W) swim
C4 (11.5W) swim

5W swim
0W swim

Figure 5. Total energy for the CPU-boundgzip and
memory-boundswim application on the Latitude, using dif-
ferent idle states.

3.4 Idle modes

Reducing the frequency (and thus performance) reduces idle
time, unless there is no idle time (as in heavily loaded
servers). Modern CPUs have low-power modes which the
OS can invoke when the system is idle. Idle modes still con-
sume power in most cases, and take time to enter and exit
(the deeper, i.e. lower-power, the idle mode is, the more time
it takes to enter and exit). As discussed by Miyoshi [Miyoshi
2002], the power consumed while idle must be taken into ac-
count if overall energy saving is the goal.

Figure 5 shows total energy consumption when account-
ing for the idle energy used in various low-power modes
during the faster runs (for a total time equal to the slowest
run time). Besides the actual low-power modes supported
(“C states”), we also show hypothetical 5W and 0W states
(active power is 22–30W). We see again a significant dif-
ference between memory-intensive and CPU-intensive pro-



 18
 20
 22
 24
 26
 28
 30
 32
 34
 36
 38

 18  20  22  24  26  28  30  32  34  36  38

In
pu

t P
ow

er
 (

W
)

Predicted Input Power (W)

Expected
1.3V
1.2V
1.1V
1.0V

Figure 6. Actual vs. predicted input power for the Dell
Latitude D600 laptop running from the AC adapter.

cesses, although for the hardware-supported idle modes, run-
ning at the lowest frequency always results in the lowest total
energy on this platform. As the hypothetical states demon-
strate, this will change once the hardware offers idle states
of really low power consumption, as embedded processors
do. Note that even with a zero-power idle mode, race-to-halt
is sub-optimal for all but the most CPU-bound applications.

3.5 Power-supply nonlinearities

Systems often use voltage regulators to convert from one
voltage to another. These regulators often have a high effi-
ciency, but that efficiency may depend on the operating con-
ditions. During our experiments on the Latitude we ran into
the perplexing situation where reducing the CPU frequency
would increase the power drawn by the system. This was
caused by a change in efficiency of the laptop’s CPU power
supply as the load changed, as shown in Figure 6. Such an
effect provides a challenge to power management schemes
based on simple analytical power models or heuristics. We
worked around this issue by running the Latitude from its
battery instead of the AC power adapter, however we ex-
pect other systems’ energy efficiency to be affected by their
power consumption. Martin’s work regarding the efficiency
of batteries [Martin 2001] clearly falls into a similar cate-
gory. Our approach naturally deals with these effects, given
an appropriate model for the power supply efficiency.

3.6 Temperature effects

The temperature of the processor core affects the power con-
sumption in two ways: leakage current is proportional to the
temperature of the silicon, and the power required for active
cooling (fan) is significant. The result is that higher frequen-
cies (which cause the system to run at a higher temperature)
use disproportionately more energy, and that the relative en-
ergy benefits of the frequency setpoints change when the
CPU is at an elevated temperature. This effect is shown in
Figure 7.

 27.6

 27.8

 28

 28.2

 28.4

 28.6

 50  52  54  56  58  60  62  64  66  68

In
pu

t P
ow

er
 (

W
)

Temperature (degrees C)

High Fan
Medium Fan

Low Fan

Figure 7. System power vs. temperature for gzip at
600MHz on a Dell Latitude D600

3.7 Frequency switching overheads

The time during which the CPU is unavailable during fre-
quency switches varies considerably between platforms. Of
the ones we tested it ranged from 10µs (Pentium-M based
Latitude, not including the voltage change which happens
asynchronously) through 140µs worst-case for the Opteron.
This is pure overhead, since the machine consumes en-
ergy without doing any useful processing. Some other plat-
forms examined exhibited interesting features: the PXAs
take 500µs for a full frequency switch, compared with 20
cycles for a so-called “turbo mode” switch.

The overhead is due to two operations — the voltage
and the frequency change. The overhead involved in these
operations is highly hardware-specific.

The platforms provide different levels of automation. On
the Opteron, software controls the voltage ramps, and so the
CPU is unavailable for the duration of the voltage switch.
The Pentium-M is fully hardware-sequenced, and therefore
the only CPU downtime is during the frequency change.

On the Opteron the voltage must be scaled to the max-
imum before the frequency switch can be performed, and
subsequently to the target voltage. The period of CPU un-
availability is then dependent on both the previous and
next frequencies. For experimental purposes, the Opteron’s
DVFS driver was tuned to run faster than the specification,
allowing the above worst-case performance of 140µs. The
worst case when run within the specification was∼2ms.

3.8 Real-time dependencies

Some events in the system occur at a rate that is not related
to the system’s clock frequencies. Scheduler clock ticks are
one such type of event, and, in a system with dynamic ticks,
do not occur while in idle modes. Therefore, running at
a higher performance setting reduces both the number of
scheduler invocations incurred, and the proportion of the
system’s active time spent processing those invocations. The
number of clock ticks themselves contribute to the overall
running time.



Specifically, a timer tick frequency offtick and a tick pro-
cessing overhead ofCtick cycles will lengthen the interrupt-
free execution timeTwork of a workload toTtot according
to

Ttot

Twork

=
1

1 − Ctickftick/fcpu

. (1)

For all the platforms and operating system we tested,
fcpu ≫ Ctickftick and thus the effect was negligible.

4. Koala Power-management Framework
As argued in the introduction, effective power management
needs to be able to predict the system’s power and perfor-
mance response to the use of the hardware’s power controls.
Given the complexities outlined above, such a model must
be specific to the hardware platform, and must take into ac-
count the characteristics of the workload. As such character-
istics change over time, the model must adapt at run time.

Furthermore, there is significant benefit from separat-
ing the mechanisms enabling power management (including
the modelling of application behaviour) from the policies.
The choice of policy depends not only on a system’s pur-
pose (managing power on a server vs. energy on a battery-
powered device) but may even change over time (dependent
on load, battery charge or real-time deadlines) and may need
to be integrated with other OS policies.

The approach taken in Koala therefore cleanly separates
the modelling from the management. The model is specific
to the hardware platform and provides an abstraction of
platform details. The management component provides a
generalised policy that includes commonly-used policies as
special cases, and can be adapted at run time.

4.1 Basic model

The basic model, originally developed on PXA-based em-
bedded platforms, has been presented previously [Snowdon
2007] and is summarised below.

In the following we normalise applicationperformance
and energy use to their values at the maximum frequency
(i.e. highest performance) setpoint. Hence a performance of
90% means that the execution time is1/0.9 = 1.11 times the
minimum. Similarly, 110% energy use means 10% higher
than at the maximum frequency. Obviously, normalised per-
formance never exceeds 100%, while normalised energy can
be larger or smaller than 100% (as in Figure 5).

Our approach represents a program’s execution time and
total energy use as a linear combination of quantities mea-
surable at run time. In the case of execution time, these are
the inverses of the various clock frequencies (CPU, busses,
memory), and can easily be extended to multiple clock do-
mains, as long as their parameters are accessible to the OS.
The energy model contains static energy (static power times
execution time), dynamic energy terms (clock frequency
times square of the respective voltage), other voltage- and

frequency-dependent terms, as well as performance coun-
ters which measure energy-relevant events (see Section 5.2
for details).

4.2 Model Extensions

Some platforms, such as the Dell Latitude D600, have a
thermal sensor which can be read by the operating system.
This affects the model and should be included, as the leak-
age power is proportional to temperature. However, on the
Latitude D600, the overhead of reading the sensor is sub-
stantial, and omitted in the results included here (the experi-
ments were run with a constant ambient temperature). Other
OS-observable factors could also be included, such as speed
of the CPU’s cooling fan. We expect that this approach is
also suitable for including other factors, such as interrupts
and DMA [Bircher 2007]. However, detailed modelling of
I/O is beyond the scope of this paper, having been addressed
to some degree by prior work (e.g. [Zeng 2005]).

The energy used during any extra idle time can be added.
This makes sense in the case where the system is under-
utilised, or where the system will not be shut down following
a period of work. In this case, running at a higher-than-
minimal frequency leads to more time spent in an idle mode.
We therefore add this extra energy into the model as

Etotal = Eactive + (Tmax − T )Pidle . (2)

We also added the frequency-switch overhead (see
Section 3.7) when predicting the performance during the
next time slice, which has the effect of giving a slight pref-
erence not changing the frequency from the present setting
(which in general has been selected for a different process
since frequency selection happens at the beginning of a time
slice). We do not make any assumption that a switch may be
amortised over several time slices. On the laptop, the model
is trivial — a constant10µs overhead per switch. On the
server, a more complex model is required:

Tswitch =
2Vmax − Vcurrent − Vnext

Vstep

Tstep + Tlock, (3)

whereVstep is the size of the step in the ramp,Tstep is the
latency incurred at each step andTlock is the PLL locking
delay. We make the approximation that the power remains
constant during the switch.

4.3 Platform characterisation

While modern processors provide performance counters for
measuring a large number of different events, the number
of events that can be counted concurrently is typically quite
small (2–4). Hence we need an approach to determine the
most appropriate counters. We also need a systematic way
of determining the appropriate weights of all the observed
quantities.

We solve this by running a representative set of bench-
marks (theplatform characterisation workloads) on the sys-



tem. The set is chosen to encompass a wide range of charac-
teristics, in order to represent any future workload.

Each benchmark is run individually with no other activ-
ities on the system, once for each frequency setting, while
measuring execution time and energy consumption (using
a wattmeter). We also collect all available performance-
counter events, which requires many identical runs per
benchmark program and per setting in order to sample
all counters (but this effort can be reduced somewhat, see
Section 5.1.2).

We then perform an exhaustive analysis of the results to
determine the set of performance counters that gives the
most accurate prediction of energy use across the whole
characterisation workload and all settings. The regression
also produces the correct weights without making arbitrary
assumptions.

Assuming this model is good, it should allow us to predict
the response of a workload to changes in operating condi-
tions. Specifically, from observing the performance and en-
ergy use at one DVFS setting, it should allow us to predict
performance and energy use at a different setting. We con-
firmed this with a separate set of benchmarks (thevalidation
workloads). On the embedded platform, we found that we
could predict performance at any other setting with an aver-
age error of less than 2%, and energy use with an average
error of around 6% [Snowdon 2007].

4.4 Idle power characterisation

On many systems the power and transition latency for
C states are stored by the manufacturer in ROM (accessi-
ble via ACPI). When this information is not available, or
the system is in a different state from that measured by the
manufacturer (e.g. a different screen brightness setting), or
one simply does not trust ACPI, the idle powers can be char-
acterised by running benchmarks that put a system with no
foreground activities to sleep for varying periods of time.A
complication is that the OS uses some policy for choosing
idle modes as a function of sleep time, which we did not
want to interfere with. Instead we used the OS’s accounting
of time spent in various sleep states, and used linear regres-
sion on the average idle power

Pave =
∑

i

TCi

Ttotal

PCi
, (4)

where TCi
is the time spent in idle stateCi, Ttotal =∑

i TCi
, andPCi

the power drawn in stateCi. We avoid
having to deal with a potential frequency and voltage de-
pendence of the idle power by always switching to the low-
est frequency when idling. We have not yet integrated into
Koala a prediction of the amount of time spent in each idle
state.

4.5 Selection of settings

During normal execution time we collect the relevant statis-
tics separately for each process. Each time a process blocks

or is pre-empted, we use the power and performance mod-
els to estimate and record its energy usage during the last
execution period. The next time the process is scheduled,
assuming temporal locality, we use the data gathered dur-
ing the previous time slice to determine the optimal setting
according to the system’s (then active) power-management
policy.

Even in the worst case, the frequency switch over-
head is a small percentage of the timeslice (about 1.5%,
for the Opteron), and therefore could be ignored in many
cases. However, modelling the switch overhead according
to Section 4.2 allows reducing the number of frequency
switches, resulting in better performance and energy sav-
ings.

4.6 Policy

We implemented two policies which between them include
and generalise all policies we have found in the literature.
The first, which we call themaximum-degradation policy,
chooses the lowest frequency which keeps (estimated) per-
formance above a certain threshold. A threshold of 90% was
empirically found to give reasonable results [Weissel 2002].

The second policy, which we call thegeneralised energy-
delay policy, minimises the quantity

η = P 1−αT 1+α, (5)

whereP is the power consumption,T the execution time
(inverse performance) andα is a parameter that can be varied
between -1 and 1. Special choices ofα result in a number of
particular policies found in the literature. Specifically:

α = 1 maximises performance (forces highest frequency)

α = 0 minimises energy (E = PT )

α = −1 minimises power consumption

α = 1/3 minimises the energy-delay product [AbouGhaza-
leh 2008]ET = PT 2.

Other values map to other policies used in the literature [Pil-
lai 2001, Pénzes 2002]. Our approach allows the OS to easily
adapt the power-management policy to changed operating
conditions.

Note that0 < α < 1 will throttle different processes dif-
ferently, depending on their characteristics: memory-bound
processes will execute at lower frequency than CPU-bound
processes, as the former achieve relatively high energy sav-
ings for relatively low performance degradation.

In order to minimise run-time costs and avoid floating-
point arithmetic in the kernel, a more suitable representation
of the policy function is

log2 η = (1 − α) log2 E + 2α log2 T. (6)

This can be implemented in fast fixed-point arithmetic us-
ing theclz instruction and a look-up table. Sincelog is a
monotonic function, minimisinglog2 η also minimisesη.



5. Evaluation
5.1 Experimental Procedure

5.1.1 Platforms

We evaluated Koala on ten different platforms, ranging from
ARM-based embedded systems platforms (PXA255/270,
iMX31) to laptop-class systems (using Atom or Pentium-M
processors), to server-class computers (Opteron, Xeon). Due
to space limitations we focus on the two platforms produc-
ing the most interesting results, representative of both the
strengths and limitations of our approach. These are a laptop
and a server, both x86-based.

Some platforms are less interesting because they have
long frequency switching delays, and thus gain only lim-
ited benefit from our methodology. Others were dominated
by CPU external power consumption like network devices
or screen and thus enable only marginal benefits from fre-
quency scaling. Others were uninteresting in that a small ra-
tio of CPU to memory speed makes most benchmarks CPU-
bound.

All experiments were conducted in an air-conditioned
environment to eliminate large temperature variations.

The laptop is a Dell Latitude D600 [Del 2004] based on
an 1.800 GHz Pentium-M processor paired with the In-
tel 855PM chipset. It has 1GB of DDR266 memory with
a 133 MHz clock rate, and a frontside bus frequency of
100 MHz but quad pumped to 400 MHz. The core frequency
clock is varied from 0.8 to 1.8 GHz in 100 MHz steps and the
core voltage is varied from 0.98 V to 1.34 V. We switch fre-
quencies by accessing the respective registers directly rather
than via ACPI, as ACPI did not export all possible frequen-
cies/voltages. The LCD backlight was switched off to reduce
the system’s static power, and improve savings gained from
the CPU for the experiments.

In order to help keep each benchmark run deterministic
and consistent with the others, the network interface was
removed from the kernel during measurements. This reduces
any unpredictable wakeups because of network interface
interrupts. The parallel port was used for triggering energy
measurements and the serial port was used as a console
terminal.

The Pentium M has a cycle counter and two user-
configurable counters which can each measure one of several
hundred different events, of which we used 164 potentially-
relevant events to create our models. During a frequency
switch, the CPU is unavailable for10µs while the frequency-
synthesis circuitry (PLL) re-locks. The voltage is automati-
cally ramped up and down by the hardware prior to or fol-
lowing the frequency switch, respectively. This means that
for a short period of time following the switch request, the
processor may operate at a frequency different than the re-
quested one.

The system has three sleep states which were measured
and use 18.5 W in C2, 13.1 W in C3 and 11.1 W in C4.

Power consumption was measured in the battery supply
line using a custom-designed device (called Echidna). Mea-
suring at the battery reflects the importance of minimising
the battery energy use (rather than wall-socket energy) while
disconnected from an external supply. The Echidna has a
5 mW accuracy, sampling at 4.7 kHz. It has an on-board mi-
crocontroller which integrates the power to obtain the energy
over a period, triggered by the parallel port of the machine
under test.

The server is based on an AMD Opteron 246 processor
clocked at 2 GHz. Using a custom driver, we were able to
put the CPU in five different settings ranging from 0.8 GHz
at 0.9V to 2 GHz at 1.5 V.

The system has 512 MB of DDR400 SDRAM, and while
the memory frequency was fixed at 200 MHz, we noted that
the memory controller changed the memory bus frequency
down to 160 MHz at the lowest CPU frequency of 800 MHz;
this was built into the model for the platform.

The overhead for a switch on this platform varies depend-
ing on the current and target frequencies, ranging from as
low as15µs when dropping the frequency from 2 GHz to
any value, to140µs when increasing from the minimum to
the maximum frequency. This is due to delays while ramping
the core voltage to the required level, and then the re-locking
delay incurred by the PLL of the clock generator.

The processor has a cycle counter and four user-
configurable counters which, like the Latitude, can each
measure one of several hundred events, of which we exam-
ined 177.

Power measurement was performed using a commer-
cial AC power meter with an accuracy of 0.9% sampled at
2.5 Hz. This was inserted between the wall socket and the
machine’s power plug and thus measured the system’s total
AC power consumption (a reduction of the total AC power
consumption being the main goal for server power manage-
ment).

5.1.2 Approach

We used benchmarks from SPEC CPU2000 for characterisa-
tion and CPU2006 for evaluation. The input data sizes were
varied based on platform performance and time constraints.

All experiments were conducted on Linux 2.6.24.4, com-
piled with GCC version 4.1. Benchmarks were run in single-
user mode and several sources of interrupts and wakeups
within the kernel were removed. On the Latitude, the timer-
interrupt frequency was reduced to 20 Hz during characteri-
sation in order to further minimise jitter caused by interrupt
handling on the overall benchmark results during the param-
eter selection and model generation.

All benchmarks were conducted in an air-conditioned
environment to minimise error due to temperature variation.

As the calibration of our model requires many identical
runs, differentiated only by the events measured by the per-
formance counters, deterministic execution times are essen-



tial. We found that this is not easy to achieve in Linux — in
some cases the execution times of supposedly identical runs
differed by as much as 20%. We traced this to L2 cache miss
rates changing by several orders of magnitude between runs,
apparently due to conflict misses resulting from changed
physical-memory layout. We worked around this problem by
rebooting the system before each benchmark run.

To further ensure that both performance and energy re-
sults for each benchmark were consistent between runs, all
benchmarks were run from atmpfs filesystem (i.e. from
RAM) to eliminate disk I/O. Output data was discarded via
/dev/null to avoid console output and interrupts. Buffer
cache writebacks were disabled and disk power manage-
ment was disabled to ensure that the disk remained spinning
(avoiding spin-up and spin-down energy and interrupts).

The characterisation can take a considerable amount of
time depending on the platform specifications. For exam-
ple, with 10 frequencies, 20 benchmarks, 150 performance
events, 2 performance counters, and an average benchmark
runtime of 100 seconds, the time for characterisation would
take nearly 18 days. We reduced this somewhat by using
incomplete benchmark sets (subset of benchmarks and set-
tings) to close in on the most relevant performance events,
which were then thoroughly evaluated using the full sets.

5.2 Characterisation

While the procedure for selecting performance-counter
events, as described in Section 4.3, is systematic and fully
determined by the benchmarks, we are left with one rel-
atively arbitrary decision: We need to determine the best
performance-counter events for two models, performance
and power, but only have a small number of events that can
be observed concurrently.

Given that performance and power consumption for a
given setpoint are both essentially determined by a process’s
memory accesses, it makes sense to share the same events
between both models. In theory it would be possible to per-
form a regression analysis for the combined model. How-
ever, we found that we get good results if we use regression
on the performance model to select the events.

On the server platform, our characterisation procedure
selected the following set of events for the four available
performance counters, all of which are intuitively relatedto
memory-boundedness:

• quadword write transfers

• L2 cache misses (datacache fill)

• dispatch stalls due to reorder buffers being full

• DRAM accesses due to page conflicts.

The performance model resulting from these events plus
the cycle counter fits the characterisation data with a coef-
ficient of determination ofR2 = 0.98, which indicates an
excellent fit. The power model, based on the same perfor-

mance counters and the basicfV 2 term, also results in a
coefficient of determination ofR2 = 0.98.

For the laptop, the selection procedure chose the follow-
ing counters:

• Number of completed burst transactions

• Number of lines removed from the L2 cache

This resulted in a performance model withR2 = 0.98 and
a power model withR2 = 0.96, which, given the limited
number of performance counters, can also be considered a
good fit.

The normal Linux sleep-state policies (implemented by
cpuidle) operate when idle time is available. In the case
where frequency scaling affects the idle time, the associated
energy used can be added in to the model.

The power in each of the idle modes on the laptop was
characterised according to Section 4.4. The standard Linux
mechanism for dealing with idle modes (cpuidle with the
menu governor) was enabled, and the percentage of time
spent in each mode while idle was varied using a synthetic
benchmark to repeatedly sleep for different periods, caus-
ing cpuidle to use different sleep states. The results fit
Equation 4 withR2 > 0.99999.

We also measured the average idle power for both the
laptop and server. When idle for long periods, the laptop
resides almost exclusively in C4. We therefore use the power
for C4 as the idle-power when the laptop is under-utilised.
The task of predicting the percentage of time spent in each
of the idle states has been left to future work in workload
prediction.

5.3 Adaptation to workload

At each time slice, the Koala implementation selects a fre-
quency setting based on the system’s energy-management
policy as described in Section 4.5. The policy can be selected
at run time via a/proc interface.

Figure 8 shows how Koala adapts to the memory-
and CPU-bound phases of theswim benchmark (using a
minimum-energy policy). The lower graph ofFigure 8 shows
how the addition of the frequency switch latency terms
greatly reduces the number of frequency switches, by intro-
ducing a bias against switching. This improved accounting
saves an additional 1% of energy in this case.

Three time-slice lengths were trialled, the commonly-
used 100 Hz and 250 Hz, as well as 1000 Hz (sometimes
used in real-time applications). The system worked well at
both 100 Hz and 250 Hz. At 1000 Hz the accuracy decreased
markedly. We attribute this to two effects: Firstly, the fre-
quency switch overhead is becoming more significant com-
pared to the time slice. Secondly, averaging over a shorter
period makes the result more sensitive to short-term fluctua-
tions in application behaviour. We did not investigate thisis-
sue further, as the (more standard) longer time slices worked
well.



-1

 0

 1

 2

 3

 4

 0  50  100  150  200  250  300  350  400  450

S
et

tin
g

Normalised Time (cycles)

swim

-1

 0

 1

 2

 3

 4

 0  50  100  150  200  250  300  350  400  450

S
et

tin
g

Normalised Time (cycles)

swim with switching latency model

Figure 8. Koala behaviour for the first 1000 time slices of
swim on the server with and without latency terms.

5.4 Model Accuracy

Figure 9 shows the performance and energy use of 27 SPEC
CPU2006 benchmarks under the minimum-energy policy
α = 0 in Equation 5) on the server. The benchmarks omit-
ted for space reasons are all CPU-bound and thus uninter-
esting for this platform. The energy saving is between 0 and
15% of thetotal system energy. The latitude showed even
more significant energy savings (see Figure 11). For some
benchmarks (the memory-boundswim) Koala was able to
save 29% of the energy for only a 3% loss in performance at
the minimum energy setting. This is an estimated 45% sav-
ing of thedynamic energy (estimated by subtracting the idle
power).

For most benchmarks there is good agreement, generally
within a few percent, between the actual performance and
energy use and the estimates produced by our model, which
indicates that the approach generally works well. However,
there is a single case where the model fails spectacularly,
mispredicting performance of the LBM benchmark by 25%
(107 vs. 86) and energy by 20% (68 vs. 85). The system
still saves energy on this benchmark — while the models
fail to predict accurately, they still provide a good heuristic
for frequency selection. More accurate models would allow
more reliable, predictable energy savings. LBM was the only
such case we observed where the models failed in this way.

 80

 85

 90

 95

 100

 105

 110

lb
m

 te
st

m
cf

 te
st

eq
ua

ke
 r

ef

sw
im

 r
ef

po
vr

ay
 tr

ai
n

gz
ip

 g
ra

ph
ic

 r
ef

m
ilc

 te
st

lib
qu

an
tu

m
 te

st

de
al

II 
te

st

sj
en

g 
te

st

gc
c 

tr
ai

n

ca
ct

us
A

D
M

 te
st

bz
ip

2 
te

st
 2

bz
ip

2 
te

st
 1

om
ne

tp
p 

tr
ai

n

bw
av

es
 te

st

gr
om

ac
s 

te
st

xa
la

nc
bm

k 
te

st

w
rf

 te
st

na
m

d 
te

st

ca
lc

ul
ix

 tr
ai

n

ze
us

m
p 

te
st

as
ta

r 
te

st

to
nt

o 
te

st

hm
m

er
 te

st

h2
64

 te
st

sp
hi

nx
 tr

ai
n

P
er

fo
rm

an
ce

 (
%

)

Est T
Act T

 65

 70

 75

 80

 85

 90

 95

 100

 105

lb
m

 te
st

m
cf

 te
st

eq
ua

ke
 r

ef

sw
im

 r
ef

po
vr

ay
 tr

ai
n

gz
ip

 g
ra

ph
ic

 r
ef

m
ilc

 te
st

lib
qu

an
tu

m
 te

st

de
al

II 
te

st

sj
en

g 
te

st

gc
c 

tr
ai

n

ca
ct

us
A

D
M

 te
st

bz
ip

2 
te

st
 2

bz
ip

2 
te

st
 1

om
ne

tp
p 

tr
ai

n

bw
av

es
 te

st

gr
om

ac
s 

te
st

xa
la

nc
bm

k 
te

st

w
rf

 te
st

na
m

d 
te

st

ca
lc

ul
ix

 tr
ai

n

ze
us

m
p 

te
st

as
ta

r 
te

st

to
nt

o 
te

st

hm
m

er
 te

st

h2
64

 te
st

sp
hi

nx
 tr

ai
n

E
ne

rg
y 

C
on

su
m

pt
io

n 
(%

)

Est E
Act E

Figure 9. Comparison of estimated vs. actual performance
(top) and energy (bottom) for the minimum energy policy on
the server platform.

There are two possible explanations for this behaviour.
For one, the characterisation benchmark set (CPU2000) may
not cover a wide-enough range of behaviours, as such, fail-
ing to produce a parameter/weight selection that allows pre-
diction of LBM’s behaviour. The second is that the available
set of performance-counter events may just not be suitable
for accurate prediction of the behaviour of this benchmark.

We enabled idle energy in the model (which adjusts the
energy for any extra idle time created thanks to frequency
increases), and ran benchmarks over a fixed time period. In
this case, on both platforms, the energy-optimal frequencyis
almost always the minimum.

5.5 Policies

Figure 10 shows how Koala implements themaximum-
degradation policy (see Section 4.6). Curves in the top graph
show the actual performance of representative benchmarks
under varying performance goals. The thick diagonal line
represents the ideal response, under perfect operation all
curves should be on or just above this line.

It can be seen that actual performance mostly gets close
to the target. Some benchmarks run at slightly less than the



 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 20  30  40  50  60  70  80  90  100

A
ct

ua
l P

er
fo

rm
an

ce
 (

%
)

Performance setting (%)

lbm_test
mcf_test
swim_ref

gzip_graphic_ref
milc_test

povray_test
equake_ref

Requested Performance

 70

 80

 90

 100

 110

 120

 130

 140

 150

 20  30  40  50  60  70  80  90  100

A
ct

ua
l E

ne
rg

y 
(%

)

Performance setting (%)

lbm_test
mcf_test
swim_ref

gzip_graphic_ref
milc_test

povray_test
equake_ref

Figure 10. Maximum-degradation policy on the Latitude

target performance, this results from the discrete setpoints,
inaccurate performance estimation, and Koala’s adjustment
lagging behind changes of workload behaviour.

The horizontal lines extending to the left of the graph
are a result of the limited frequency range available — the
processor cannot be throttled well enough to reach the lower
performance targets. This effect is particularly strong for the
memory-bound benchmarks.

The bottom graph in Figure 10 shows the corresponding
energy use. We can see that the maximum-degradation pol-
icy saves significant energy (up to about 25%) on memory-
bound benchmarks, but actually wastes energy on CPU-
bound benchmarks, clearly indicating that this policy is not
suitable for a wide range of workloads.

The reason is that a CPU-bound benchmark executes in
a constant number of cycles, irrespective of the core fre-
quency. Lower frequency leads to a longer overall execution
time, which increases the static energy components (leak-
age currents in the processor and memory). This is the effect
shown in Figure 1, which indicates that race-to-halt is the
best policy for CPU-bound workloads.

Figure 11 shows that ourgeneralised energy-delay policy
produces much better results. As expected,α = 1 yields the
highest performance whileα = 0 produces the lowest en-

 40

 50

 60

 70

 80

 90

 100

 110

-1 -0.5  0  0.5  1

A
ct

ua
l P

er
fo

rm
an

ce
 (

%
)

α

lbm_test
mcf_ref

swim_ref
gzip_graphic_ref

milc_test
povray_test
equake_ref

 70

 80

 90

 100

 110

 120

 130

 140

-1 -0.5  0  0.5  1

A
ct

ua
l E

ne
rg

y 
(%

)

α

lbm_test
mcf_ref

swim_ref
gzip_graphic_ref

milc_test
povray_test
equake_ref

Figure 11. Generalised energy-delay policy on the Latitude.

ergy consumption (with a slight aberration of the patholog-
ical lbm benchmark), and intermediate values produce in-
termediate results. The graphs also show that the standard
energy-delay policy (α = 0.33) produces, for most bench-
marks, an energy use close to that of the minimum-energy
setting, for a moderate performance degradation. Negative
values ofα are not useful for energy management, although
small negative values can be used to throttle power dissipa-
tion for thermal management.

Figure 11 also shows that some benchmarks, specifically
the notoriouslbm, fail to reach more than about 90% per-
formance atα = 1. This is obviously a result of incorrect
performance estimates leading Koala to choosing an incor-
rect setting. (This is confirmed bylbm also failing to reach
its maximum-frequency energy use atα = 1).

The strength of the generalised energy-delay policy with
its single global parameter is particularly evident when com-
paring the CPU-boundpovray with the memory-bound
milc (Figure 12).povray is not slowed down at all for pos-
itive α, since there is no energy to save. For the sameα val-
ues,milc is scaled in order to save energy. The policy only
sacrifices performance when there is a corresponding energy
benefit. Belowα = 0, povray is scaled aggressively to re-



 40

 50

 60

 70

 80

 90

 100

-1 -0.5  0  0.5  1
 80

 90

 100

 110

 120

 130

 140

 150

 160

 170

A
ct

ua
l P

er
fo

rm
an

ce
 (

%
)

A
ct

ua
l E

ne
rg

y 
(%

)

Alpha setting

Act Perf POVRAY
Act Energy POVRAY

Act Perf MILC
Act Energy MILC

Figure 12. Generalised energy-delay policy on the server.

duce the system power consumption, but with a correspond-
ing increase in energy used.

The policy applies equally well when the model includes
the system’s idle energy, and fairly trades performance and
execution in this different context. Again, we demonstrate
the idle energy models using well-behaved benchmarks.

Enabling the switch overhead model, we see the number
of frequency switches reduced for most policies and bench-
marks (in the case ofswim on the server, this is about 9%)
because the model predicts a higher performance for the in-
cumbent frequency, which it therefore favours slightly. We
also see the energy savings and model accuracy increase
when using these models. We use well-behaved benchmarks
here to highlight the effect of the switch overhead model.

5.6 Multi tasking

Figure 13 shows the effect of running a multi-tasking work-
load consisting of memory-boundswim and CPU-bound
gzip. The top part of the figure shows that the energy and
performance predictions of the combined workload under
the minimum-energy policy is about as good as for separate
executions, and the energy saved is about the average of the
two individual loads, as can be expected. The bottom graph
shows how Koala adapts the setting for the two processes
independently.

5.7 Higher-level Policies

One advantage of the generalised energy-delay policy is
that the single parameter (α), allows the system to adapt to
changing energy-management objectives.

As a demonstration we implemented a daemon which
monitored the laptop’s battery state of charge using ACPI.
At capacities greater than 70%, the daemon setsα to 1, and
the system runs at maximum performance. As the battery is
depleted, the daemon lowersα until the battery gets below

 0.6

 0.7

 0.8

 0.9

 1

 1.1

sw
im

gz
ip

co
m

bi
ne

d

N
or

m
al

is
ed

 P
er

fo
rm

an
ce

/E
ne

rg
y

est perf
act perf

est energy
act energy

 0

 1

 2

 3

 4

 5

 0  1e+08  2e+08  3e+08  4e+08  5e+08  6e+08

C
ho

se
n 

S
et

tin
g

Timestamp

swim
gzip

Figure 13. Koala multi-tasking on the server

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  2  4  6  8  10  12  14  16  18  20

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

α,
 N

or
m

al
is

ed
 B

at
te

ry
 S

ta
te

N
or

m
al

is
ed

 E
ne

rg
y/

T
im

e

Iteration

α
Battery Level

Execution Time
Energy

Figure 14. Using the Latitude’s battery state of charge to
drive the power management policy.

30% and thenα is set to 0, i.e. minimum energy. Figure 14
shows how the performance-energy tradeoff changes as the
battery depletes while runningmcf

Another high-level policy on top of the generalised
energy-delay policy emulates theondemand governor in
Linux: CPU scaling is based on the available idle time. Dur-
ing periods of low utilisation,α is lowered towards 0 (the
minimum energy setting), and in times of high load,α is
increased toward 1.0 (the maximum performance setting).

5.8 Calculation overheads

A major concern when developing Koala was the overhead
introduced, since this could reduce the energy savings and
be detrimental to performance. In order to minimise the



overhead, all calculations were performed in fixed point, and
pre-calculated lookup-tables used where appropriate.

Reducing the number of setpoints considered in the calcu-
lations also reduces the overhead. Therefore, setpoints which
are never chosen should be excluded.

We ran the set of benchmarks on kernels with and without
Koala enabled. On both the laptop and the server, for both
a single task executing, and for two concurrent tasks, the
mean performance difference was well within the standard
deviation of the benchmarks. To emphasise the overheads,
the timer tick frequency was increased up to 1000Hz, but
the mean difference in performance between the two kernels
was still unmeasureable.

6. Main-stream practicality
How Koala would be implemented in main-stream operat-
ing systems running on varying hardware remains an open
problem. The issues are varied, but considered manageable,
particularly if hardware vendors were to become involved.

One problem is the effort required in determining the
models for a given system. This effort would be signifi-
cantly reduced with hardware-vendor support in providing
appropriate models and inputs, theoretically derived from
the design. These would be both more accurate than the de-
rived models as above, and easier to characterise. In-built
power measurement hardware would allow for characteri-
sation either as the system runs, adapting the models on-
line, or automatically at boot or burn-in. Components with-
out manufacturer-provided models could be modelled as de-
scribed above.

Koala stores the models as Linux modules generated from
parameters in the Linux source tree. While this is practical
on a small scale, it is impractical for vendors. An alternative
is to store models (or components of the model) in ROM or
using ACPI tables/methods.

7. Conclusions and Future Work
Effective power management by the OS is of increasing im-
portance for a wide class of computing platforms, from small
mobile devices to high-end servers. Present approaches are
ad-hoc mechanisms and policies which, as we have shown,
often leads to poor results.

We have presented the Koala approach, which has two
components. Firstly, we provide the OS with the right tools
to perform effective power management, by allowing it to
gain insight into the relevant properties of an application. We
have presented a model that allows the OS in most cases to
obtain accurate estimates of a running process’s power con-
sumption, as well as the performance and power response to
frequency scaling. We have also demonstrated that bench-
marks have sufficient temporal locality to use this informa-
tion to predict their behaviour under changed frequency set-
tings.

The second component is a policy that allows the OS to
tune the system’s operation towards an energy-management
objective. The generalised energy-delay policy contains a
single parameter which the OS can use to run the system at
maximum performance, minimum energy, reduced thermal
load, or intermediate values representing trade-offs between
performance and energy. The OS can tune this parameter to
adapt to a changing energy-management objective.

Rather than treating every process the same, Koala ad-
justs individual processes differently in order to achievethe
best overall result. Specifically, when in an intermediate
energy regime, memory-bound processes where small re-
ductions in performance result in large energy savings are
throttled more than CPU-bound processes where small en-
ergy savings come at the cost of a significant performance
penalty.

The main shortcoming we found was a single benchmark
whose behaviour was poorly predicted by the system. While
energy was still saved for this benchmark, the significant er-
rors in the prediction of its performance and energy use cer-
tainly lead to sub-optimal performance. We have not (yet)
determined whether this failure is a result of an insufficient
characterisation set, and could be fixed by more a orthogonal
characterisation workload, or whether it due to the hardware-
provided performance events not being sufficient to predict
the behaviour of that particular workload. In any case, the
experience shows that operating systems would benefit from
hardware manufacturers providing statistics tailored to pre-
dicting energy use.

In the future, we intend to improve both the modelling
accuracy, and the workload prediction capabilities within
Koala. While our present techniques are sufficient for ef-
fective energy management, improvements will allow even
more energy to be saved, and a more accurate trade-off with
performance. We intend to generalise to more platforms, tak-
ing into account multi-core systems, I/O power, and the other
power management challenges that an even more varied set
of platforms will present.

Acknowledgments
Part of the work for this paper was carried out while David
Snowdon was an intern at Intel Corporation. He gratefully
acknowledges the support and feedback given by members
of Intel’s Corporate Technology Group.

NICTA is funded by the Australian Government’s De-
partment of Communications, Information Technology, and
the Arts and the Australian Research Council through Back-
ing Australia’s Ability and the ICT Research Centre of Ex-
cellence programs.

References
[AbouGhazaleh 2008] Nevine AbouGhazaleh, Bruce R. Childers,

Daniel Mosse, and Rami G. Melhem. Integrated CPU cache



power management in multiple clock domain processors. In3rd
HIPEAC, Göteborg, Sweden, Jan 27-29 2008.

[Barroso 2007] Luiz Andre Barroso and Urs Hölzle. The case
for energy-proportional computing.IEEE Comp., 40(12):33–37,
Dec 2007.

[Bellosa 2000] Frank Bellosa. The benefits of event-driven energy
accounting in power-sensitive systems. In9th SIGOPS Eur. WS,
Kolding, Denmark, Sep 17–20 2000.

[Bircher 2005] Lloyd Bircher, Madhavi Valluri, Jason Law, and
Lizy John. Runtime identification of microprocessor energy
saving opportunities. InInt. Symp. Low Power Electron. &
Design, 2005.

[Bircher 2007] W. Lloyd Bircher and Lizy K. John. Complete
system power estimation: A trickle-down approach based on
performance events. InInt. Symp. Performance Analysis Syst.
& Softw., pages 158–168. IEEE Computer Society, 2007.

[Choi 2005] Kihwan Choi, R. Soma, and M. Pedram. Fine-grained
dynamic voltage and frequency scaling for precise energy and
performance tradeoff based on the ratio of off-chip access to on-
chip computation times.Trans. CAD ICAS, 24(1):18–28, Jan
2005.

[Del 2004] Dell Latitude D600 Systems User’s Guide. Dell Inc.,
Nov 2004. URLhttp://support.ap.dell.com/support/
edocs/systems/latd600/.

[Economou 2006] Dimitris Economou, Suzanne Rivoire, Christos
Kozyrakis, and Partha Ranganathan. Full-system power analysis
and modeling for server environments. In2nd WS Modeling,
Benchmarking & Simul., pages 158–168, Boston, MA, June
2006.

[Grunwald 2000] Dirk Grunwald, Philip Levis, Keith I. Farkas,
Charles B. Morrey III, and Michael Neufeld. Policies for dy-
namic clock scheduling. In4th OSDI, pages 73–86, San Diego,
CA, USA, Oct 2000.

[Heath 2005] Taliver Heath, Bruno Diniz, Enrique V. Carrera, Wag-
ner Meira Jr., and Ricardo Bianchini. Energy conservation in
heterogeneous server clusters. In10th PPOPP, pages 186–195,
2005.

[Hsu 2003] Chung-Hsing Hsu and Ulrich Kremer. The design,
implementation, and evaluation of a compiler algorithm forCPU
energy reduction.SIGPLAN Not., 38(5):38–48, 2003.

[Hsu 2004] Chung-Hsing Hsu and Wu chun Feng. Effective dy-
namic voltage scaling through CPU-boundedness detection.In
2004 WS Power-Aware Comp. Syst., pages 135–149, 2004.

[Isci 2006] Canturk Isci, Gilberto Contreras, and Margaret
Martonosi. Live, runtime phase monitoring and prediction on
real systems with application to dynamic power management.
In 39th MICRO, Nov 2006.

[Kephart 2007] J.O. Kephart, H. Chan, R. Das, D.W. Levine,
G. Tesauro, F. Rawson, and C. lefurgy. Coordinating multiple
autonomic managers to achieve specified power-performance
tradeoffs. InICAC, 2007.

[Kotla 2004] Ramakrishna Kotla, Anirudh Devgan, Soraya Ghiasi,
Tom Keller, and Freeman Rawson. Characterizing the impact
of different memory-intensity levels.2004 Int. WS Workload
Charact., pages 3–10, 2004.

[Kumar 2006] Amit Kumar, Li Shang, Li-Shiuan Peh, and Niraj K.
Jha. HybDTM: a coordinated hardware-software approach for
dynamic thermal management. In43rd DATE, Jul 2006.

[Mahesri 2004] Aqeel Mahesri and Vibhore Vardhan. Power con-
sumption breakdown on a modern laptop. In Babak Falsafi and
T. N. Vijaykumar, editors,2004 WS Power-Aware Comp. Syst.,
volume 3471 ofLecture Notes in Computer Science, pages 165–
180. Springer, 2004.

[Martin 2001] Thomas L. Martin.Balancing Batteries, Power, and
Performance: System Issues in CPU Speed-Setting for Mobile
Computing. PhD thesis, Carnegie Melon University, 2001.

[Miyoshi 2002] Akihiko Miyoshi, Charles Lefurgy, Eric Van Hens-
bergen, Ram Rajamony, and Raj Rajkumar. Critical power slope:
understanding the runtime effects of frequency scaling. In16th
Int. Conf. Supercomp., pages 35–44, New York, NY, USA, 2002.
ACM Press.

[NVIDIA Corporation 2007] NVIDIA Corporation. PowerMiser
7.0: Intelligent power management technology for NVIDIA
GeForce 8M series and Quadro NVS/FX notebook GPUs, May
2007. URL http://www.nvidia.com/object/feature_

powermizer.html.

[Peddersen 2007] Jorgen Peddersen and Sri Parameswaran. CLIP-
PER: Counter-based low impact processor power estimation at
run time. In12th ASPDAC, Yokohama, Japan, Jan 2007.

[Pénzes 2002] Paul I Pénzes and Alain J. Martin. Energy-delay
efficiency of VLSI computations. In12th ACM Great Lakes
Symp. VLSI, pages 104–111, New York, NY, USA, 2002. ACM.
ISBN 1-58113-462-2.

[Pillai 2001] Padmanabhan Pillai and Kang G. Shin. Real-time dy-
namic voltage scaling for low-power embedded operating sys-
tems. In18th SOSP, pages 89–102, Lake Louise, Alta, Canada,
Oct 2001.

[Scaramella 2006] Jed Scaramella. Worldwide server power
and cooling expense: 2006-2010 forecast. White paper
203598, IDC, Sep 2006.http://www.sun.com/service/
eco/IDCWorldwideServerPowerConsumption.pdf.

[Snowdon 2005] David C. Snowdon, Sergio Ruocco, and Gernot
Heiser. Power management and dynamic voltage scaling: Myths
and facts. In2005 WS Power Aware Real-time Comput., New
Jersey, USA, Sep 2005.

[Snowdon 2007] David C. Snowdon, Stefan M. Petters, and Gernot
Heiser. Accurate on-line prediction of processor and memory
energy usage under voltage scaling. In7th Int. Conf. Emb. Softw.,
Salzburg, Austria, Oct 2007.

[Stoess 2007] Jan Stoess, Christian Lang, and Frank Bellosa. En-
ergy management for hypervisor-based virtual machines. In
2007 USENIX, Santa Clara, CA, Jun 2007.

[Weiser 1994] Mark Weiser, Brent Welch, Alan J. Demers, and
Scott Shenker. Scheduling for reduced CPU energy. In1st OSDI,
pages 13–23, 1994.

[Weissel 2002] Andreas Weissel and Frank Bellosa. Process cruise
control—event-driven clock scaling for dynamic power manage-
ment. InCASES, Grenoble, France, Oct 8–11 2002.

[Zeng 2005] Hang Zeng and Carla S. Ellis Alivn R. Lebeck. Expe-
riences in Managing Energy with ECOSystem.Pervasive Com-
put., 4(1):62–68, 2005.

http://support.ap.dell.com/support/edocs/systems/latd600/
http://support.ap.dell.com/support/edocs/systems/latd600/
http://www.nvidia.com/object/feature_powermizer.html
http://www.nvidia.com/object/feature_powermizer.html
http://www.sun.com/service/eco/IDCWorldwideServerPowerConsumption.pdf
http://www.sun.com/service/eco/IDCWorldwideServerPowerConsumption.pdf

	Introduction
	Related Work
	Power Management Challenges
	Workload dependence of DVFS response
	Multiple adjustable frequencies
	Variable memory system performance
	Idle modes
	Power-supply nonlinearities
	Temperature effects
	Frequency switching overheads
	Real-time dependencies

	Koala Power-management Framework
	Basic model
	Model Extensions
	Platform characterisation
	Idle power characterisation
	Selection of settings
	Policy

	Evaluation
	Experimental Procedure
	Platforms
	Approach

	Characterisation
	Adaptation to workload
	Model Accuracy
	Policies
	Multi tasking
	Higher-level Policies
	Calculation overheads

	Main-stream practicality
	Conclusions and Future Work

