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Abstract

Deploying dynamic voltage and frequency scaling
(DVFS) techniques in a real-time context has generated
some interest in recent years. However, most of this
work is based on highly simplifying assumptions re-
garding the cost and benefit of frequency scaling. We
have integrated a measurement-based DVFS technique
with an EDF based scheduling framework. This enables
the use of the dynamic slack caused by the variability
of execution time, to reduce energy consumption and
thus extend battery life or reduce thermal load. We have
tested the approach using hardware instrumentation on
a real system. This paper describes not only the theo-
retical basis for the work, but also our experiences with
DVFS when confronted with physical reality.

1 Introduction
Power management in embedded devices may be moti-
vated by several factors: extended battery lifetime, re-
duced need for heat sinks and other thermal dissipation
devices, a limited power supply (e.g. a solar powered
system), or simply improved environmental sustainabil-
ity.

Various policies for energy savings have been widely
deployed in portable devices like laptop computers
without real-time requirements. However, due to their
interactive nature, heuristics, with ill defined impact on
the temporal behaviour of the system are acceptable.
This is obviously not the case for real-time systems
where temporal behaviour is considered a prime sys-
tem property similar in importance to the functional be-
haviour.

In the last ten years a large body of work has been
devoted to the integration of power management poli-
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cies combined with real-time scheduling. However,
most approaches assume an inversely proportional re-
lationship between the CPU core frequency and execu-
tion time and ignore issues like a substantial frequency
switching cost, static power consumption or the effect
of a changing memory frequency on performance and
power. All of these issues are evident in real hardware
platforms.

Within this work we attempt to take our experience
with the physical reality of DVFS and develop an in-
tegrated real time and power-management scheduling
framework. In order to perform DVFS in a real-time en-
vironment, tracking of dynamic slack is essential. Dy-
namic slack is encountered thanks to the difference be-
tween the worst case execution time (WCET) and the
actual execution time. For most software the actual ex-
ecution time is subject to substantial variability as the
code is subject to different input parameters at run time.

The RBED work by Brandt et al. [1, 2] is an earli-
est deadline first (EDF) based scheduling framework.
Tracking of system slack is an integral part of this
scheme. Major advantages of the approach are high
utilisation (thanks to EDF), and integrated non-RT and
RT scheduling. It does this by temporal isolation and
thus ensures a graceful degradation in the event of an
overload situation.

We have set out to integrate power management in
an RBED-based scheduling framework. To address
the simplifications of previous work, a good model for
the temporal- and energy-consumption impact at dif-
ferent frequency settings is required. In previous work
we have developed such time [3] and energy [4] mod-
els. Our proposed approach allows for arbitrary and
frequency-dependent cost of a frequency switch in the
time and energy domain. Examples for such require-
ments are XScale-based processors or the Crusoe [5].

Based on these models we have developed a scheme
which makes use of the implicit slack tracking of the
RBED framework. We have implemented this work on



a XScale-based platform within the OKL4 microkernel.
In this initial paper we have kept a number of assump-
tions made by the original RBED approach about real-
time tasks: we assume periodic, non-communicating
tasks where deadlines are runnability requirements (i.e.
a job must complete before the next job from that task
is released) on a single processor. The relaxation of
these assumptions is subject to ongoing work within our
group.

The next section will cover the most relevant related
work before we revisit our previous modeling work and
an overview of RBED. Section 5 details our extensions
to the RBED model to integrate our power management
work. The implementation and our evaluation of it are
the subject of Section 6 before summing up with the
conclusions.

2 Related work

Strategies for dynamically scaling voltage and fre-
quency (DVFS) to save energy is a wide research area.
A number of groups have developed approaches to-
wards both power management in real-time systems
and performance prediction under frequency scaling.
Within this paper we concentrate on the small repre-
sentative set of these contributions which we consider
most relevant to our work.

Using DVFS when considering timing constraints
raises the need for precise execution-time prediction.
Weissel and Bellosa [6] explored event-counter-based
prediction of performance degradation as part of their
development of a best-effort DVFS scheme. Moni-
toring certain system events allows predictions which
are within a small margin of error compared with the
widespread, but unrealistic, assumption of a linear re-
lationship between core clock frequency and execution
time. Refining this approach, Choi at al. [7,8] described
the effects of on-chip and off-chip cycles towards per-
formance degradation under frequency scaling. Perfor-
mance monitoring counters (PMCs) and an on-line re-
gression technique were used to calculate the balance
between these two. One disadvantage of this technique
was the 100µs processing time required at each fre-
quency switch. While these papers do explicitly eval-
uate timing constraints, they do not target real-time sys-
tems. Ultimately they had a substantial impact on the
development of our previous work [3, 4].

A number of groups [9–12] have integrated DVFS
and real-time scheduling approaches. Pillai and Shin
[9] simulated their RT-DVS algorithm for different task
sets and different hardware configurations. They imple-

mented a kernel extension for the Linux scheduler and
have shown that deadline-based approaches can per-
form better than fixed-priority-based scheduling (since
they have knowledge of the future workload).

The scheduling of sporadic tasksets was addressed by
Qadi et al. [10]. They achieved significant power sav-
ings for their particular problem. This work is closely
related to [9] and uses off-line techniques to determine
a global level of slowdown. Both fall in the category of
inter-task DVS, not exploiting the possibilities of DVS
inside running jobs.

Dudani et al. [11] used system slack time to allow
certain jobs to run at lower CPU core frequencies based
on the two common assumptions of many DVFS pa-
pers: that execution times scales linearly with the CPU
clock frequency and that running jobs slower implies
saving energy. Unfortunately, simulating an ideal real-
time system without taking comparing with the be-
haviour of a real system did not expose the issues with
their proposed solution.

The real-time DVFS approaches above are based on
the assumption that stretching workload maximise util-
isation saves energy in general. Depending on the hard-
ware, this assumption may be misleading (as shown by
Aydin et al. [12], our previous work [4]).

Exploring the possibilities of DVFS for periodic task
sets, Aydin et al. [12] have shown that premature fre-
quency scaling can even lead to increased power con-
sumption. Careful consideration of on-chip and off-
chip workload has to be made to achieve considerable
system wide power savings. However, similarly to the
other approaches, Aydin et al. [12] evaluate their ap-
proach in idealised simulations rather than in a physical
system environment.

The effects of frequency switching overhead which
represent significant, un-interruptible sections, were
largely ignored in recent work. However, our paper
shows how these side effects can be managed in real-
world real-time systems.

3 Prediction of Time and Energy

In our previous work [3, 4] we have developed an accu-
rate method to model time and energy consumption un-
der DVFS. This is now deployed in the implementation
of the DVFS-RBED policy. Here, we briefly introduce
the relevant concepts. Further detail is provided in the
original publications [3, 4].



3.1 Time

The execution time for a given piece of software can
be described as the sum of the times spent waiting on
different functional units of the system. This can be
time in the CPU core actually executing instructions,
time spent waiting for main memory, time spent waiting
for I/O operations to complete and so on.

All of these operations can be considered as scaling
inverse proportionally with their respective clock fre-
quencies. This allows the execution time C to be ex-
pressed as follows:

C =
ccpu
fcpu

+
cbus
fbus

+
cmem

fmem
+

cio
fio

+ . . . (1)

The coefficients cx can be interpreted as being caused
by a number of events combined with an number of
wait-states associated with each of these events. Ide-
ally there would be a way to observe the events di-
rectly. However, many CPU cores provide us with a
means to observe some events which are correlated with
the events in question. Depending on the architecture
chosen, these have different names; e.g. event ocur-
rence counter for the PowerPC or performance event
counter in AMD chips. In Intel chips these are usu-
ally called performance monitoring counters (PMCs)
and we are going to use this term for the remainder of
the paper. The available events which can be observed
varies widely between architectures, but usually include
beside many others good predictors like cache misses,
TLB misses, or write backs.

Within this paper we focus on events concerning
memory accesses, which in this case involve the bus and
the memory frequency. In our sample platform the I/O
is not subjected to a separate frequency, hence we will
concentrate will only use ccpu , cbus , and cmem respec-
tively. Depending on the number of appropriate PMCs
available (in this case, 2), the equation can be linearly
extended.

cbus = α1PMC 1 + α2PMC 2 + . . .

cmem = β1PMC 1 + β2PMC 2 + . . . (2)

The PMC readings are application specific, while the
coefficients αi and βi are architecture specific. There-
fore, a given hardware platform simply needs to be cal-
ibrated.

Most architectures provide a cycle counter. This ex-
presses the execution time C of an application in terms
of the cycles ctot of the CPU core frequency fcpu . As

such the final parameter ccpu can be computed based on
a single measurement:

ccpu = ctot −
fcpu

fbus
cbus −

fcpu

fmem
cmem (3)

Now that all parameters of the model are instantiated,
we can, from a measured part of the application, reason
about the progress the application would make at the
fastest frequency setpoint and the time required to ex-
ecute the remainder of the task in any given frequency.
This will be further explained in Section 5.2.

3.2 Energy
The energy model follows a similar logic to the time
model: the energy consumed by the system depends on
the properties of the workload. It depends largely on
the number and type of operations performed, as well
as the static power over a given time interval ∆t.

E = V 2
cpu(γ1fcpu + γ2fbus + γ3fmem)∆t+ (4)

V 2
cpu(α0PMC 0 + . . . + αmPMCm) +

β0PMC 0 + . . . + βmPMCm +
γ4fmem∆t + Pstatic∆t,

Equation 4 consists of five groups of terms.

1. The first term accounts for the constant event rate
owing to the CPU, memory and bus clocks within
the CPU (in our test system, the memory controller
and processor bus are on-die). The number of cy-
cles executed is proportional to the time. These
are proportional to the the square of the CPU core
voltage.

2. Similarly, the next term associates certain events
described by performance monitoring counters
PMC i with energy consumed within the chip (i.e.
proportional to V 2

cpu ). For these, only the event
count, rather than the frequency are relevant.

3. The PMCs are also used to describe off chip
events, like memory accesses, for which the CPU
core voltage scaling has no impact.

4. The memory bus frequency is seen external to the
CPU, and is therefore accounted for by a term
which is independent from the CPU core voltage.

5. Finally the static power constitutes all of the power
not effected by frequency or workload changes
(and the energy is therefore proportional to the
time spent executing).



The performance monitoring counter values PMC i

have to be a measure of the events during the time in-
terval ∆t. In turn the time interval at some target fre-
quency can be expressed using Equation 1. For clarity
of the presentation, we have not combined the equations
as the result would become unwieldily.

While Equation 4 is presented with a single scalable
voltage domain (the CPU core voltage) and a constant
voltage domain, it is trivial to extend to multiple scal-
able voltage domains. Currently, the model does not ex-
plicitly take the effects of I/O events into account. The
task model assumes that blocking on I/O will invoke the
scheduler which initiates a switch to a different task. In
this case, I/O is not accounted to the job which actually
initiates the I/O operation, but the one executing dur-
ing the I/O operation. However, as the energy model is
determined offline this effect is not taken into account.
The effects of I/O on the model are subject of ongoing
research in our group. Further details on performance
counter selection, etc, can be found in our prior work.

4 RBED Summary

Since our work is based on the RBED scheduling
framework developed by Brandt et al. [1] we will briefly
introduce the the background and concept of the RBED
approach. Devices with mixed timing requirements rep-
resent the majority of today’s embedded systems. Many
of them allow the installation of arbitrary user software
which may have unknown timing behaviour. Demand-
ing precise worst-case execution-times at installation
time is not feasible. Therefore, other precautions must
be taken to ensure that the behaviour of any given ap-
plication cannot harm the provision of timing require-
ments of other programs. The misbehaviour under over-
load conditions is one of the major shortcomings of
classic earliest deadline first (EDF) scheduling. Brandt
et al. developed a multi-class real-time scheduler for the
seamless support of mixed hard, soft and non real-time
applications. It ensures a timely separation of tasks by
preemptability and a resource allocating governor. Re-
source allocation takes place at run-time where tasks
dynamically request a share of the CPU time. The re-
source allocator can be implemented as a user space ap-
plication that performs an on-line schedulability anal-
ysis. The preemptive scheduler implements EDF but
ensures that only resources granted by the resource al-
locator are used.

One advantage of this approach is that allocation of
resources for soft real-time tasks can be independent of
the actual WCET of its jobs. Thus, for a soft real-time

task, where an application may miss (a small number
of) deadlines, instead of using the worst-case execution
time, a smaller timeslice may be allocated. This allows
over-allocation of the system while keeping single ap-
plications in temporal isolation; i.e. one soft real-time
job exceeding its allocated resources has no impact on
the schedule of other tasks. This allows seamless inte-
gration of hard real-time, soft real-time and best-effort
tasks in one system with a unified scheduling policy.

U utilisation of the entire taskset, U =
∑
∀i

ui

ui utilisation of a given task τi, ui = Ei/Ti at
the top frequency setpoint

ri,n release time of a given job Ji,n

di,n absolute deadline of a given job Ji,n

xi,n current service time ui(t−di,n−1) of a given
job Ji,n

Ci WCET of a given task τi at the top frequency
setpoint

Ei budget allocated to task τi

Di relative deadline of task τi

Ti period/minimal inter arrival time of task τi

C∗
i part of current job of task τi completed

(equivalent at top speed)

Figure 1: Nomenclature Used

For a complete description of the algorithms includ-
ing the proof of correctness, we refer to Brandt’s orig-
inal work [1]. For the relevant nomenclature see Fig-
ure 1.

Given the feasibility of dynamic resource dispatch-
ing, the introduction of per-job budgets allows for a
trivial measurement of resource usage and on-line re-
allocation of slack time. The task model is illustrated in
Figure 2 and can be described as follows:

A task τi consists of multiple subsequent jobs Ji,r.
These jobs cannot overlap (ri,r+1 ≥ ri,r + Ti).

Every job is preemptible at any time and the jobs of
a task have a minimum inter-arrival time (IAT) which is
called the period in the case of periodic tasks. No more
than one job can be released within the period/IAT.
Each job has a deadline relative to its release time. For
the scope of this paper, the relative deadline equal to the
period of the job. (Di = Ti)

Each job has a worst case execution time (WCET)
Ci which can be obtained using well-known techniques
and is very likely to be larger than the actual execution
time xi,r. As part of the RBED scheduling, a budget Ei

is reserved to each job Ji,r representing the timeslice
that must be granted to the job by the scheduler. In case



of hard real-time requirements, the budget equals the
WCET (Ei = Ci) to guarantee timely completion of all
jobs. For soft real-time requirements, the assigned bud-
get may be smaller than the WCET Ei ≤ Ci to guaran-
tee timely completion of all jobs {Ji,r|xi,r ≤ Ei}.

In most cases, the job will finish in less time than
reserved (xi,r ≤ Ei). The remaining budget Ei − xi is
reserved, but not used and is therefore called slack Si,r.

C Si

j

i
*

E

C

i

i

D = T     
i

τ
i

Figure 2: Parameters of Job Jj

If a per-job budget Ei assigned to a task τi is smaller
than the WCET of a single job Ji,j of τi, the job’s run-
time can potentially exceed the budget. Since this is an
overload situation and would likely have drastic con-
sequences in classic EDF scheduling, precautions are
taken in RBED. The scheduler preempts every job when
it has used up its budget Ej and extends the deadline
Dj of the job by one period Tj . At the same time, the
job’s budget Ej is refilled to the assigned value. Thus,
the remainder of the execution is postponed until it is
scheduled again.

This guarantees a temporal isolation among all tasks
in the system as long as U =

∑
∀i

ui ≤ 1 with ui =

Ei/Ti. To ensure this condition is met, the resource al-
locator (RA) which may be an ordinary user space task
must acknowledge all requests for changing job’s pe-
riods, budgets or deadlines. The idea of dynamic re-
allocation of processing time is based on five theorems.

Theorem 1 The earliest deadline first (EDF) algorithm
will determine a feasible schedule if U ≤ 1 under
the assumption Di = Ti.

Theorem 2 Given a feasible EDF schedule, at any time
a task τi may increase its utilisation ui by an
amount up to 1 − U without causing any task to
miss deadlines in the resulting EDF schedule.

Theorem 3 Given a feasible EDF schedule, at any time
a task τi may increase its period without causing
any task to miss deadlines in the resulting EDF
schedule.

Theorem 4 Given a feasible EDF schedule, if at time t
task τi decreases its utilisation to u′i = ui−∆ such

that ∆ ≤ xi,n/(t− ri,n), the freed utilisation ∆ is
available to other tasks and the schedule remains
feasible.

Theorem 5 Given a feasible EDF schedule, if a cur-
rently released job Ji,n has negative lag at time t
(the task is over-allocated), it may shorten its cur-
rent deadline to at most xi/ui and the resulting
EDF schedule remains feasible.

The resource allocator algorithm can be described as
follows: UKernel describes the worst case utilisation re-
quired by the operating system. UBE,min describes the
minimum reserved utilisation reserved for all best-effort
tasks.

1. Assign desired utilisation UHRT,i to all hard real-
time (HRT) tasks as long as UHRT ≤ 1 −
UKernel−UBE,min where UHRT =

∑
∀iHRT

uiHRT

Reject all other requests for HRT resources.

2. Distribute utilisation not reserved for hard real-
time tasks, best-effort tasks or the operating
system among the soft real-time tasks accord-
ing to their requested resources. In case
USRT = 1 − UKernel − UBE,min − UHRT <∑
∀iSRT

ui,desired each SRT task is assigned ui =

ui,desired/
∑

∀jSRT

uj,desired

3. The total utilisation reserved for best-effort tasks is
the remaining utilisation which can be described as
UBE = 1−UKernel−UHRT−USRT ≥ UBE,min.
UBE is equally distributed among all best-effort
tasks.

5 Model Extension
In order to integrate our DVFS work with the RBED
approach we need to extend the RBED model. Our task
model is based on the idea that each job can be slowed
down, if this has beneficial effects for the total energy
consumed by the system. Jobs are preemptible and after
each preemption the frequency is re-evaluated.

One major issue when performing frequency scaling
on real-world architectures is the lengthy time some-
times required to switch voltage and frequency. A fre-
quency switch can be modelled as a substantial atomic
section. At design time, this must be accounted for ap-
propriately.

The following section describes how this model can
be integrated with the RBED scheduling algorithm.



5.1 Budget for Switching
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Figure 3: Budget Components

One of the fundamental advantages of RBED
scheduling is the absence of a complex schedulability
test which requires a priori knowledge of all parameters
of the taskset. Allocating time budgets isolates tasks
from one another. To guarantee this isolation, it is nec-
essary to ensure that no job can use more resources than
allocated a priori.

Figure 3 shows, how a time budget must be allocated
in order to guarantee isolation within our DVFS frame-
work. The first frequency switch that needs to be con-
sidered is the initial one, which may be required if the
previous job was scaled to a frequency lower than the
minimum frequency necessary to guarantee timeliness.

Each job Jj,r can potentially preempt another job
Ji,s when it becomes un-blocked due to an interrupt if
Dj < Di. At preemption time, the scheduler deter-
mines the energy optimal frequency setting for job Jj,r

which may differ from the optimal set point for job Ji,s.
In the case where a frequency switch is performed, suf-
ficient time must be allowed such that the preempted job
Ji,s is able to restore its frequency to guarantee timely
completion. Our approach is the automatic donation the
time required for one frequency switch to the preempted
job. A second frequency switch must be accounted for
in each task’s budget. This policy is illustrated in Fig-
ure 4 a) and b). These depict the point in time of the
preemption and the subsequent donation of the switch-
ing cost for the second frequency switch of job Jj,r to
job Ji,s. The dashed boxes indicate as-yet unused time
budget.

When a job becomes ready and the system is in its
idle state, no automatic donation need to be performed
since the idle task does not need to restore its frequency
set point. In this case, the job can use up the additional
budget for further slowdown if beneficial for the sys-
tem’s total energy use.

The key point of this section is this: within a job,
an arbitrary number of frequency changes can be per-
formed as long as the budget accounts for two fre-
quency changes.

Technically, it would be sufficient to perform the au-
tomatic donation only if a frequency switch actually
takes place. However, this requires an unreasonable
amount of house keeping without tangible benefit.
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Figure 4: DVFS-RBED Preemption Behaviour

5.2 Dynamic Slack Management
On top of the RBED scheduling algorithm, Lin and
Brandt [2] have developed a set of slack reclaiming
mechanisms which enhance the temporal behaviour
of soft real-time applications in RBED: SRAND and
SLAD are consistent with our approach as they allo-
cate slack to the highest priority task as soon as possi-
ble. SLASH which attempts to borrow slack from fu-
ture jobs of the same task and BACKSLASH, which
allocates slack to past jobs which have not completed
within their budget, could be integrated with our work
without conflict.

The task model of RBED allows implicit knowledge
of slack time in the schedule. Slack Si,r generated by
job Ji,r represents the amount of scheduled but unused
processing time. This slack time can be pushed forward
to the next runnable task’s budget in the schedule with-
out harming the timely behaviour of any task in the task
set. Such a donation of slack is depicted in Figure 4 c).
A formal proof can be found in [2]. It should be noted,
however, that this implies that slack is only donated to
jobs with a later deadline. When extending the work to
communicating and blocking tasks, this condition needs



to be revisited and ascertained.
Since the amount of budget allocated for each job

should be sufficient for the job to complete within the
given budget of the job, additional budget allows longer
processing than required.

Reducing the clock frequencies (fcpu , fmem , fbus )
can reduce the total energy consumption for the job’s
execution. To determine feasible frequency setpoints,
the time model in Section 3.1 is used. The set of feasible
setpoints {σ = {fcpu , fmem , fbus}|Cσ

i,r ≤ Ei,r} for
job Ji, r is then investigated for their potential effects on
the job’s energy consumption using the model described
in Section 3.2. If a slower execution saves energy, a
frequency switch is performed.

The algorithm illustrated in Figure 5 shows the ac-
tions to be taken as part of each scheduler invocation.
First, all frequency set points are tested for feasibility.
Therefore, the time for potential frequency switches is
taken into account. Note, the time needed for a fre-
quency switch is not necessarily constant. It is zero in
case the frequency is unchanged and may be substan-
tial for other transitions. We assume, changing from set
point σA to σB is a constant, but the transition from
σA to σC may take a different amount of time. A real
world example for this behaviour is the Crusoe proces-
sor [5]. Xscale processors like the PXA270 or PXA555
have certain frequency combinations which where the
transition is almost instantaneous (turbo mode changes)
and others which require a substantial amount of time.

Second, the energy consumption for the job at all
feasible set points is investigated. The set point which
leads to the lowest energy consumption is then chosen.

After returning from a preemption, the job may have
received a donation of slack time if the preempting job
has not used up its entire reserved budget. Therefore,
the energy optimal frequency is recalculated on each
scheduler invocation.

One related issue is the absence of a precise measure
for the progress of a job. Thus, the progress is esti-
mated using the same time model (Section 3.1). Know-
ing the frequency set point and the number of events
which have occurred during the job’s execution so far,
the time model can be used to determine the remain-
ing processing time. Figure 6 illustrates this idea. The
events depicted represent PMC events. The number of
these events is in reality large, but has been limited for
illustrative purposes.

A job of task τi at maximum frequency σmax is de-
picted in Figure 6 a) the height of the boxes indicates
the power consumption and thus relates to the frequency
setpoint. In the example, five events ε1..5 happen during
execution of this job. Figure 6 b) shows the execution
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Figure 6: DVFS-RBED Progress estimation and dy-
namic slowdown

of the same job at a lower frequency set point σx. The
number of events remains five. The preemption of the
job is depicted in Figure 6 c). This preemption changes
neither the total execution time of the job, nor the num-
ber of events during execution. Figure 6 d) shows the
actual execution of task τj preempting task τi. While
the number of events remains five a further slowdown
is possible due to a donation of slack from task τj .

To perform a further slowdown after a preemption
and donation, the remaining runtime of the job Ji,r

must be determined. A measure for progress is needed.
Since there is no absolute measure for an application’s
progress the scheduler could determine, the estimation
technique in 3.1 is performed in the reverse order. The
job’s execution time so far and number of events can be
mapped to an equivalent progress at σmax . We call this
the absolute progress C∗

i,r(t) of job Ji,r at time t.
The remaining execution time at any frequency can

now be determined in the reverse order, using the dif-
ference between progress and WCET (Ci−C∗

i,r(t)) and
the time model 3.1.



newEnergy = energyAtCurrentFrequency

newFrequency = currentFrequency

for frequency in frequencySetPoints

if executionTimeAtSwitchedFrequency + switchingCost.Time < remainingBudget

&& switchingCost.Energy + energyAtSwitchedFrequency < newEnergy

newEnergy = switchingCost.Energy + energyAtSwitchedFrequency;

newFrequency = frequency

if newFrequency != currentFrequency

switchFrequency(newFrequency)

Figure 5: Algorithm

In cases for which the performance degradation can
not be estimated safely, the algorithm may use a look-
up table to determine the WCET Ci of hard real-time
tasks. In such a scenario progress estimation can not be
performed safely either, thus a further slowdown is not
possible for hard real-time jobs.

Since our mechanism is based on the fact that slack
time is released at the end of a job, slack time can only
be re-allocated if a job finishes execution. In the case
of sporadic tasks, no jobs may be executed for a long
period of time. This slack time is currently not taken
into account in our algorithm and would be assigned to
best-effort tasks (if available) or the idle task.

5.3 Static Slack Management
To gain maximum possible energy savings, static slack
time must be distributed entirely. Static slack time de-
scribes the amount of time in the schedule which is not
allocated. In other words, it describes the sum of all idle
times in the schedule.

Static slack which is not allocated to any task cannot
be reclaimed or used for power management purposes
using our proposed algorithm. We found two differ-
ent options, to ensure full utilisation of the system. The
reader may recall ui = Ei/Ti where Ei does not neces-
sarily describe the true execution time but the reserved
time slice.

One solution is a distribution of static slack among
all existing tasks in the system which is later forwarded
as dynamic slack since jobs will likely complete earlier
than their budget expires. Dynamic slack is then used
for optimal frequency scaling. The advantage of this
approach is that all tasks benefit from the slack evenly
likely leading to a decreased energy consumption.

The other solution is the introduction of a ghost task.
This task’s sole purpose is freeing up its own budget.
This approach has the benefit of keeping track of static
slack explicitly. This enables easier exploitation of this
slack in a dynamic situation where tasks are added at
runtime.

6 Implementation Issues and
Lessons Learned

6.1 Experimental platform
We implemented the proposed algorithm on an off-the-
shelf Gumstix Connex platform which runs the L4 mi-
crokernel OKL4 v1.5.2 which was the latest release at
the time of implementation and the Iguana operating
system [13].

In particular, we wrote three software modules im-
plementing the proposed algorithms. First is the pre-
emptive EDF scheduler which replaces the fixed prior-
ity scheduling algorithm of the L4 microkernel. Prior-
ity was replaced in the task control block by deadlines,
budget and period. The scheduler preempts running
jobs when the job’s budget is used up. If a job completes
before its budget is entirely used, the remaining budget
which represents the generated slack is enqueued in a
deadline sorted budget queue.

Second, the user space resource allocation was inte-
grated in the iguana root task which has special privi-
leges. One privilege added is the exclusive right to per-
form system calls to the scheduler. This ensures that
no other task can make its way around the mechanism.
Deadlines, budgets and periods can be allocated at build
time or dynamically changed on runtime if the resource
allocator permits the change.

Third, a module for arithmetic evaluation of the time
model 3.1 and the energy model 3.2 was added to the
kernel space scheduler. It evaluates the execution-time
estimation for all possible frequency settings and then
calculates the energy consumption at all feasible set
points. Finally it chooses the set point related to the
lowest energy consumption.

Figure 7 shows the software architecture for our im-
plementation which is partially similar to the RBED im-
plementation we received by courtesy of Brandt et al.

The hardware platform consists of a Gumstix Connex
motherboard, an Etherstix network interface as well as
an Audiostix 2 sound card and a Tweener serial console
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driver. We have chosen this configuration to gener-
ate a typical static and dynamic power consumption of
an embedded device. The XScale PXA255 CPU fre-
quency as well as the bus frequency and the memory
frequency can enter 22 different setpoints in this config-
uration. The Gumstix platform does not support voltage
scaling.

All power consumption was measured with a power-
and energy-measurement device developed within the
group. This device obtained an accuracy of better than
a Milliwatt. The static power consumption of this hard-
ware configuration in idle mode was measured to be
1.13W . The network interface was measured to con-
sume the majority of this (0.8W ). While active, at the
lowest frequency set point, the power consumption of
the device is 1.45W and 1.57W at the fastest.

The CPU deployed in our experiments implements
two types of frequency switches. The standard switch
changes frequencies of CPU, bus and memory to one of
the 22 different modes. These changes take a substan-
tial time between 500µs and 600µs. This time is caused
by a combination of required operations, like putting
the memory in self refresh mode, and the settling time
of the phase-locked loop circuitry. The other switching
operation implemented in the PXA255 is called ”turbo”
mode switching. It allows fast switching between two
different CPU frequencies inside frequency pairs, main-
taining the memory and bus frequencies. Those turbo
frequency changes are intended for peak processing re-
quirements and happen synchronously without disrupt-
ing the memory controller or any peripherals. These
switches require only a small number of nanoseconds.

Furthermore, the PXA255 CPU implements a number
of low power states which may be useful depending on
the maximum acceptable interrupt latency. These low
power states also range from single cycle clock gating
to extremely deep sleep states which requiring a delay
on the order of one millisecond to exit.

6.2 Best effort threads
One of the key points in the RBED scheduling algo-
rithm is the seamless integration of hard real-time, soft
real-time as well as best effort tasks. Best effort tasks
can be described as tasks which do not necessarily have
a periodic or frequent blocking point and do not raise
any real-time requirements. Nevertheless, the goal is a
guaranteed continuous progress regarding their execu-
tion even under high system load to maintain the system
in a responsive state.

To keep the scheduling algorithm simple, periods,
budgets and deadlines are assigned to all best effort
tasks. Thus, these tasks are treated as real-time tasks
with artificial deadlines. Depending on the system pa-
rameters and the priority of power savings over best-
effort performance restricting the execution of best-
effort tasks to a small share can save energy. If the ex-
ecution of best-effort tasks is not restricted, the system
may never go to low-power idle mode.

6.3 Lessons learned
Calculating the energy purely needed by one particular
job shows, that faster execution saves energy because
the execution time decreases faster than the power con-
sumption increases for our particular platform. How-
ever, we believe there is a trend in modern processors,
with static power taking an increasing share of the over-
all system power consumption. Since our experimen-
tal application is a device which is constantly turned
on, the energy required by the device to stay turned on
must be taken into account. Due to the high static power
consumption of the device and compared to the low dy-
namic power consumption, the impact of the idle time
is substantial. For our particular experimental platform
it turned out, that the lowest possible frequency setpoint
is always the most energy saving.

The algorithm in Figure 5 which evaluates the time
model and the energy model must be performed in
fixed point arithmetic because floating point process-
ing would cause too much overhead in general and on
the XScale architecture in particular, since it does not
implement a floating point unit.

Another lesson learned is that a microkernel requires
extremely careful implementation of this approach. The
first microkernels developed gave the kernel design
a bad name because of the large number of context
switches are necessary and which expose deficiencies
in context switching costs as poor system performance.
Years of research and development have lead to the L4
microkernel which was designed for very high inter-
process communication (IPC) performance. This ap-



proach was successful and L4-based kernels are widely
deployed in modern embedded systems. While the suc-
cess of current L4 microkernels is based on fast context
switches and IPC. This advantage is threatened by the
overhead of Figure 5 on each context switch.

Our choice, the PXA255 processor was based on
its ability to change between run mode frequency and
turbo mode frequency without a substantial switching
time. However, the PXA270 processor implements a
half-turbo mode. This processor would have been the
better choice in hindsight. Finally, the choice of the
Gumstix platform results in the inability to use voltage
scaling. Deploying voltage scaling would lead to better
energy savings, but may add a switching overhead.

7 Conclusion

Within this paper we have shown the integration of real-
world power management with a real-time scheduling
approach and have reported on the lessons learned from
this work.

In the future, we will expand this work beyond the
scope of this paper. Core issue in this area is the ex-
tension to communicating task sets. The modeling of
systems with non rate-based applications (e.g. bursty
workloads), is another requirement for real-world de-
ployment. We will investigate the modeling and inte-
gration of these tasks within our framework. Further-
more we want to study the effects of deadlines which
are shorter than the period on the RBED algorithm in
general and on our DVFS extension in particular.

Modelling sporadic tasks as periodic tasks might not
be the energy optimal solution. Further investigation
is necessary when completely unused reserved time of
sporadic tasks can be freed for power management use.
As mentioned above, our task model assumes that I/O
completions start a job and another blocking operation
marks the end of a job. Depending on the hardware, this
model may not be sufficiently general. Further investi-
gation of the effects of intra-job blocking on our model
remains future work.
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